1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
2 years ago
11

HELP PLEASE How do you simplify this expression? (Pls list steps) -12 ÷ 3 • (-8+(-4)^2 - 6) ÷ 2

Mathematics
1 answer:
Dahasolnce [82]2 years ago
4 0

The answer is 4

steps listed above

You might be interested in
Give the largest interval over which the general solution is defined. (Think about the implications of any singular points. Ente
Leto [7]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

   No singular point due to the exponent in the solution

    The interval is   -\infty

b

   NONE

Step-by-step explanation:

From the question we are told that

     \frac{dy}{dx} =  9y

The generally solution is mathematically represented as

         \frac{dy }{dx}  =  9y

=>       \frac{dy}{y}  =  9dx

integrating both sides  

         \int\limits  {\frac{ dy}{y} } \,  = \int\limits  {9} \, dx

  =>   lny = 9x + c

 =>   y =  e^{9x +c }

 =>    y =  e^{9x} e^{c}

Here e^c  =  C

=>     y = C  e^{9x}

From the above equation we see that the domain for x has no singular point the interval is

       -\infty

Also there is no transient term in the general solution obtained because as  x \to \infty there no case where y \to 0

7 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
I need help with this one
OlgaM077 [116]

Answer:

112.98 square units

Step-by-step explanation:

Let's work backwards:

Circumference = 2πr

(37.68)/2π = r

Area = πr^{2}

Area = π * ((37.68)/2pi)^{2}

Area = 112.983 square units

3 0
3 years ago
Read 2 more answers
At the school pay students can attend for only $7, but for aduts it costs $10
svp [43]

Answer:

question? I don't understand

5 0
3 years ago
Read 2 more answers
I need help with this math problem please
Gekata [30.6K]

Answer:

C)  3(x+7)²

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Evaluate this expression <br> (-7--9)*(8+2)
    13·1 answer
  • In triangle △ABC, ∠ABC=90°, BH is an altitude. Find the missing lengths. AH=HC+2 and BC=2, find HC.
    13·2 answers
  • Suppose Cone A is similar to Cone B and the scale factor between the solids is 3:2, respectively. If the height of Cone A is 15
    15·1 answer
  • QUICKLY PLEASE<br> Find the value of x. Round your answer to the nearest tenth.
    12·1 answer
  • How to express the first one in distributive property and the second one to write the ratio of pretzels to bread chips?
    9·1 answer
  • A printing error in a math book removed the brackets and parentheses from a numerical expression. Rewrite the expression 32 + 7
    7·1 answer
  • Jason has been smoking cigarettes since he was 13 years old. He has smoked an a age of one pack of cigarettes a day since he sta
    11·1 answer
  • Which expression is positive
    15·2 answers
  • |2x+1|=|x+6| Find absolute value
    13·1 answer
  • All the corners of the shape are right angles. The perimeter of the shape is 28 m. Work out the area of ABCE.​​​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!