1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dem82 [27]
3 years ago
14

The Product of 4 and z is the same as 16

Mathematics
1 answer:
Dmitry_Shevchenko [17]3 years ago
7 0

Answer:

The variable can be any letter.

Step-by-step explanation:

You might be interested in
Help me please and answer correctly people answer wrong on purpose ​
marishachu [46]
Sorry for not answering your question but please I am telling you guys don’t fall for someone when they send you links here like this first person above me he send a link don’t press it y’all don’t this is really bad it makes your phone really bad
7 0
2 years ago
Whath percentage of 1m is 76cm
nlexa [21]

76% is the correct.....

5 0
3 years ago
ASAP NEED HELP!!!! ∩ω∩ Michael has $15 and wants to buy a combination of school lunches to feed at least three classmates. A san
Nikitich [7]

Answer:

Step-by-step explanation:

A. The first inequality is graphed as a shaded area below the solid line with x-and y-intercepts of 7.5 and 5, respectively. The second inequality is graphed as a shaded area above the solid line with x- and y-intercepts of 3.

The solution set is the set of integer-valued grid points one or between the lines.

__

B. The point (5, 1) is included in the solution area. Mathematically, it can be shown to satisfy the two inequalities:

  2(5) +3(1) ≤ 15   ⇒   13 ≤ 15   True

  (5) +(1) ≥ 3   ⇒   6 ≥ 3   True

__

C. The point (5, 1) is in the solution set. It means Michael can purchase 5 sandwiches and 1 hot lunch within his budget constraints. That will provide 6 meals, which is more than the minimum of 3 that he wants to provide.

8 0
3 years ago
Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant below the line y=5 and betw
vfiekz [6]

First, complete the square in the equation for the second circle to determine its center and radius:

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0

<em>x</em> ² - 10<em>x</em> + 25 + <em>y </em>² = 25

(<em>x</em> - 5)² + <em>y</em> ² = 5²

So the second circle is centered at (5, 0) with radius 5, while the first circle is centered at the origin with radius √100 = 10.

Now convert each equation into polar coordinates, using

<em>x</em> = <em>r</em> cos(<em>θ</em>)

<em>y</em> = <em>r</em> sin(<em>θ</em>)

Then

<em>x</em> ² + <em>y</em> ² = 100   →   <em>r </em>² = 100   →   <em>r</em> = 10

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0   →   <em>r </em>² - 10 <em>r</em> cos(<em>θ</em>) = 0   →   <em>r</em> = 10 cos(<em>θ</em>)

<em>y</em> = 5   →   <em>r</em> sin(<em>θ</em>) = 5   →   <em>r</em> = 5 csc(<em>θ</em>)

See the attached graphic for a plot of the circles and line as well as the bounded region between them. The second circle is tangent to the larger one at the point (10, 0), and is also tangent to <em>y</em> = 5 at the point (0, 5).

Split up the region at 3 angles <em>θ</em>₁, <em>θ</em>₂, and <em>θ</em>₃, which denote the angles <em>θ</em> at which the curves intersect. They are

<em>θ</em>₁ = 0 … … … by solving 10 = 10 cos(<em>θ</em>)

<em>θ</em>₂ = <em>π</em>/6 … … by solving 10 = 5 csc(<em>θ</em>)

<em>θ</em>₃ = 5<em>π</em>/6  … the second solution to 10 = 5 csc(<em>θ</em>)

Then the area of the region is given by a sum of integrals:

\displaystyle \frac12\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}\left(10^2-(10\cos(\theta))^2\right)\,\mathrm d\theta+\int_{\frac\pi6}^{\frac{5\pi}6}\left((5\csc(\theta))^2-(10\cos(\theta))^2\right)\,\mathrm d\theta\right)

=\displaystyle 50\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\} \sin^2(\theta)\,\mathrm d\theta+\frac12\int_{\frac\pi6}^{\frac{5\pi}6}\left(25\csc^2(\theta) - 100\cos^2(\theta)\right)\,\mathrm d\theta

To compute the integrals, use the following identities:

sin²(<em>θ</em>) = (1 - cos(2<em>θ</em>)) / 2

cos²(<em>θ</em>) = (1 + cos(2<em>θ</em>)) / 2

and recall that

d(cot(<em>θ</em>))/d<em>θ</em> = -csc²(<em>θ</em>)

You should end up with an area of

=\displaystyle25\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}(1-\cos(2\theta))\,\mathrm d\theta-\int_{\frac\pi6}^{\frac{5\pi}6}(1+\cos(2\theta))\,\mathrm d\theta\right)+\frac{25}2\int_{\frac\pi6}^{\frac{5\pi}6}\csc^2(\theta)\,\mathrm d\theta

=\boxed{25\sqrt3+\dfrac{125\pi}3}

We can verify this geometrically:

• the area of the larger circle is 100<em>π</em>

• the area of the smaller circle is 25<em>π</em>

• the area of the circular segment, i.e. the part of the larger circle that is bounded below by the line <em>y</em> = 5, has area 100<em>π</em>/3 - 25√3

Hence the area of the region of interest is

100<em>π</em> - 25<em>π</em> - (100<em>π</em>/3 - 25√3) = 125<em>π</em>/3 + 25√3

as expected.

3 0
3 years ago
Find the value of x.
jok3333 [9.3K]

Answer:

Complementary

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What is the value of x?<br><br> 3 • (–4) • x = 0<br><br> x =
    15·2 answers
  • Solution to the system of inequalities shown below:
    14·1 answer
  • After getting 5 new rocks, George gave half of his rock collection to Susan. If George gave Susan 36 rocks, which equation could
    6·2 answers
  • Write four numbers that fall between 0.123 and 0.124
    14·1 answer
  • 3.95m + 8.95b = 47.65
    13·1 answer
  • Will mark correct answer brainliest!<br> Factor the quadratic expression x^2−13x−48
    12·1 answer
  • PLSSS HELP
    13·1 answer
  • (2x - 4)<br> What’s the value of x
    15·2 answers
  • How do you cauculate net change ​
    10·1 answer
  • Find the circumference r = 5 cm c [?] cm c=d
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!