1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
9

As part of the quality-control program for a catalyst manufacturing line, the raw materials (alumina and a binder) are tested fo

r purity. The process requires that the purity of the alumina be greater than 84%. A random sample from a recent shipment of alumina yielded the following results (in percent):
93.2, 87.0, 92.1, 90.1, 87.1, and 93.4.
A hypothesis test will be done to determine whether or not to accept the shipment.
a. State the appropriate null and alternate hypotheses.
b. Compute the P-value.
c. Should the shipment be accepted? Explain.
Mathematics
1 answer:
denis-greek [22]3 years ago
6 0
Hi how was your day today Mr. person
You might be interested in
Please solve these for 20 points : solving formulas for a variable
Digiron [165]
6. (A/pi = r^2)
7. [(P - 2l)/2 = w]
8. [C/(2pi)= r]
9. (2A/h = b)
10. (E/c^2 = m)
6 0
3 years ago
If 33 laptops cost 30,000, what proportion could be used to determine the cost of 11 laptops?
andre [41]

Answer:

30,00 divided by 33= 909.09 times 11=9,999.99  hope it helps you

Step-by-step explanation:

6 0
2 years ago
Help me with a ASAP plz and explain
max2010maxim [7]

(f+g)(x)=f(x)+g(x)=(2x-6)+(4x+7)=6x+1

(f-g)(x)=f(x)-g(x)=(2x-6)-(4x+7)=-2x-13

(fg)(x)=f(x)×g(x)=(2x-6)(4x+7)=8x^2-10x-42

(f+g)(-2)=f(-2)+g(-2)=(2(-2)-6)+(4(-2)+7)=-11

4 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
What is c - b for six grade math
JulsSmile [24]

Answer:

specify?

Step-by-step explanation:

give us a image

4 0
3 years ago
Other questions:
  • Janet surveyed a class or students she recorded the number of hours that each student volunteered this line plot shows the resul
    6·1 answer
  • A man hits a baseball when it is 4 ft above the ground with an initial velocity of 120 ft/sec. The ball leaves the bat at a 30 d
    6·1 answer
  • A store is selling a black pair of shoes for $79.45 and a brown pair of shoes for $133.99. the black pair of shoes is marked up
    12·2 answers
  • What’s the answer to (16-x)2?
    8·1 answer
  • Solve 5r2 – 12 = 68. {±4} {±5} {±3} {±6}
    8·1 answer
  • Siena draws a map of her flower garden. She wants to plant roses 6 feet away from the marigolds and 5 feet away from the lavende
    6·1 answer
  • Which of the following is E ∪ F?
    11·1 answer
  • What is the measurement of abd <br><br>​
    15·2 answers
  • 8. A banker's loan officer rates applications for credit. The rates are normally distributed with a mean of 200 and a standard d
    9·1 answer
  • 1500 families were surveyed and following data was recorded about their maids at homes.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!