Answer:
the stoichiometric coefficient for cobalt is 3
Explanation:
the unbalanced reaction would be
Co(NO₃)₂+ Al → Al(NO₃)₃ + Co
One way to solve is to build a system of linear equations for each element (or group as NO₃) , knowing that the number of atoms of each element is conserved.
For smaller reactions a quick way to solve it can be:
- First the Co as product and as reactant needs to have the same stoichiometric coefficient
- Then the Al as product and as reactant needs to have the same stoichiometric coefficient
- After that we look at the nitrates . There are 2 as reactants and 3 as products . Since the common multiple is 6 then multiply the reactant by 3 and the product by 2.
Finally the balanced equation will be
3 Co(NO₃)₂+ 2 Al → 2 Al(NO₃)₃ + 3 Co
then the stoichiometric coefficient for cobalt is 3
-They can conduct heat
-They can conduct electricity
-They are typically stronger than non metals
Hope this helps, have a nice day! :)
Answer:
The answer to your question is given after the questions so I just explain how to get it.
Explanation:
a)
Get the molecular weight of Phosphoric acid
H₃PO₄ = (3 x 1) + (31 x 1) + (16 x 4)
= 3 + 31 + 64
= 98 g
98 g ----------------- 1 mol
0.045 g --------------- x
x = (0.045 x 1) / 98
x = 0.045 / 98
x = 0.00046 moles or 4.6 x 10 ⁻⁴
b)
Molarity = 
Molarity = 
Molarity = 0.0013 or 1.31 x 10⁻³
c)
Formula C₁V₁ = C₂V₂
V₁ = C₂V₂ / C₁
Substitution
V₁ = (0.0013)(1) / 0.01
Simplification and result
V₁ = 0.0013 / 0.1
V₁ = 0.13 l = 130 ml
Answer:
we need 6.0 moles of zinc (Zn)
Explanation:
Step 1: Data given
Number of moles ZnO produced = 6.0 moles
Step 2: The balanced equation
2 Zn + O2 → 2 ZnO
For 2 moles Zinc we need 1 mol Oxygen to produce 2 moles Zinc oxide
Step 3: Calculate moles zinc
For 2 moles Zn we need 1 mol O2 to produce 2 moles ZnO
For 6.0 moles 2nO produced, we need 6.0 moles of zinc (Zn) and 3.0 moles of O2 to react.
The average speed is 160 meters a minute.