Answer:
I think it's the second answer --If you increase the acidity..
I hope answer I can answer your question!
Answer:
31,380 Joules
Explanation:
Given Data:
Mass = m = 100 g
Temperature 1 = = 25 °C
Temperature 2 = = 100 °C
Specific Heat Constant = c = 4.184
Change in Temp. = ΔT = 100 - 25 = 75 °C
Required:
Heat = Q = ?
Formula:
Q = mcΔT
Solution:
Q = (100)(4.184)(75)
Q = 31, 380 Joules
Hope this helped!
~AH1807
If you were to take water (like many other materials) and break it up into almost the smallest things you could, you’d get molecules. If the molecules are stuck together really tightly in a regular pattern, then they’re called a solid. The solid form of water is ice. This actually makes a lot of sense, because it certainly does seem like all the little parts of a solid (like ice) are stuck together very tightly.
When you heat something up, it makes the molecules move faster. If you heat up a typical solid, it melts and becomes a liquid. In a liquid (like water), the molecules are still stuck together, but they can move around some. What actually happens is that the molecules are still sort of sticking together, but they’re constantly breaking apart and sticking to different molecules. This also makes sense when you think about water. Water sort of sticks together, but it breaks apart /really/ easily.
If you heat a liquid like water up even more (like if you put it in a pot on the stove), then the molecules will move around so fast that they can’t even hold on to each other at all. When this happens, all of the molecules go flying apart and become a gas (like when you boil water to make steam). The process of gas molecules leaving the liquid to go into the gas is called "evaporation." The opposite process is called "condensation."
<span>Hope this answers your question!</span>
The values of x represents that number of moles of water molecules that is present per mole of the salt magnesium sulfate. To determine the value for this, we need to know how much is the water that is lost after heating the sample assuming that all of the water molecules are evaporated leaving only the unhydrated form of the salt. We calculate as follows:
Mass of hydrated salt = 3.484 g
Mass after heating = 1.701 g
Mass lost = 3.484 g - 1.701 g = 1.783 g
The mass lost is equal to the mass of water lost.
Moles water lost = 1.783 g ( 1 mol / 18.02 g ) = 0.0989 mol H2O
Moles of unhydrated salt = 1.701 g ( 1 mol / 120.37 g ) = 0.0141 mol MgSO4
moles water / moles MgSO4 = 0.0989 mol H2O / 0.0141 mol MgSO4 = 7
Therefore, the value of x is 7.
Visible light spectrum or electromagnetic spectrum