Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
The balanced chemical reaction would be:
FeS(s)+2HCl(aq)→FeCl2(s)+H2S(g)
We are given the amount of the reactants to be used for the reaction. We use these amounts. First, we determine the limiting reactant of the reaction. From the data, we can say that FeS is the limiting ad HCl is the excess reactant. We calculate as follows:
Amount of HCl used: 0.240 mol FeS x 2 mol HCl / 1 mol FeS = 0.48 mol HCl
0.646 - 0.48 = 0.166 mol HCl left
Answer:
13.73g
Explanation:
mass of reactants = mass of products.
Mass reactants = 5.00 g + 10.00 g = 15.00 g
Mass products = 1.27g + mass of ammonia and water vapor
Mass of ammonia and water vapor
15.00g – 1.27 g = 13.73 g