1. (x^2+1)*(x^3+2*x)*(x^2-64) =(x^2+1)*x*(x^2+2)*(x+8)(x-8) Solving for each factor in turn, for example, x^2+1=0 => x^2=-1 => x=+i, x=-i x=0 => x=0 x^2+2=0 => x^2=2 => x=+sqrt(2)i, -sqrt(2)i x+8=0 => x=-8 x-8=0 => x=+8 we have solution set S, whereS={+i, -i, 0, +sqrt(2)i, -sqrt(2)i, -8, +8) 2. A. x^4-81=0 => x^4=81 => x^2=+9 or x^2=-9 x^2=+9 => x=+3, -3 x^2=-9 => x=+3i, -3i S={+3i, -3i, +3, -3} B. x^4+10x^2+25=0 => (x^2+5)^2=0 => ± (x^2+5)=0 => x^2=-5 => x=+sqrt(5)i (multiplicity 2 and x=-sqrt(5)i (multiplicity 2) S={+sqrt(5)i (multiplicity 2) -sqrt(5)i (multiplicity 2)} C. x^4-x^2-6=0 => (x^2-3)(x^2+2)=0 => x^2=3 or x^2=-2 S={+sqrt(2)i,-sqrt(2)i, +sqrt(3), -sqrt(3) } 3. x^4+3x^2-4=0 = (x^2-1)(x^2+4) => x^2=1 or x^2=-4 S={+2i, -2i, +1, -1}