Answer:
-290KJ/mol
Explanation:
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= 4ΔHH3PO4 - {6ΔHH2O + ΔHP4O10}
ΔHrxn = 4(-1279) - [6(-286) - 3110]
= -5116 -(-1716-3110)
= -5116-(-4826)
= -5116 + 4826 = -290KJ/mol
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Yes. Mercury has 80 protons. Tin has 50 protons. Same for electrons, it just doesn't have an exact number.
Physical properties are properties that change form but not it's chemical compound
chemical properties are properties that change in chemical substance like burning tearing