HERES THE ANSWER AND EXPLINATION
⇒Associative property of Addition is applied for three real numbers.For, any three real numbers, A, B and C
≡A+B+C=A+(B+C)=(A+B)+C=(A+C)+B→→→Associative Property of Addition
that is , we can add any two numbers first and then the third number with them.
⇒Also, Commutative Property of Addition of two numbers says that for any two numbers , A and B
≡A+B=B+A
We have to find equivalent expression using Associative Property of the sum of set of three numbers
→→(13+15+20)+(20+47+18)
Answer Written by Jerry
→(20+13+15)+(20+47+18)
Answer Written by Layla
→(20+47+18)+(13+15+20)
The Expression Written by Keith and Melinda is Incorrect,because they haven't used the bracket Properly, as associative property says that you can add any two numbers first and then the third number among three numbers.
→→Number of Students who has applied the Associative property Correctly
Option B ⇒Two(Jerry, Layla)
Answer:
Step-by-step explanation:
This represents an arithmetic progression with the first term of a = 15 and common difference of d = 3.
<u>The tenth row is the 10th term:</u>
<u>The row 10 has:</u>
- a₁₀ = 15 + 9*3 = 15 + 27 = 42 seats
Cual es la formula de un octaedro
The correct answer is D No, Dan should reduce his discretionary spending
Explanation:
For Dan to stay on the budget he needs to spend the amount budgeted for each expense or less than the amount budgeted. This occurred in the case of the Internet, food, and rent; for example, the amount budgeted for the internet was $35 and Dan spent this money, also, the amount budgeted for food was $100 and Dan spent $95, which means he stood in the budget. However, this did not occur with discretionary spending, which refers to other non-necessary expenses, because in this case, Dan spent $140 even when the budget limit was $100. Also, this exceeds the total income considering 35 + 95 + 500+ 140 = $770, which is above the income ($750). Thus, Dan did not stay in the budget because he spent more money than expected in discretionary spending and should reduce this.