1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olenka [21]
3 years ago
12

The smiths bill at a restaurant is $85 how much money should Mr. Smith leave as a tip if he plans to tip 20%

Mathematics
2 answers:
Goshia [24]3 years ago
7 0

Answer: Mr. Smith should tip $17

Step-by-step explanation:

20% = 0.2

$85 × 0.2 = $17

Ivenika [448]3 years ago
5 0

Answer:

102.00

Step-by-step explanation:

If you want to leave a 20% tip, multiply the cost by 0.20 to get the tip amount or multiply the cost by 1.20 to get the total including tip. If you want to leave a 18% tip, multiply the cost by 0.18 to get the tip amount or multiply the cost by 1.18 to get the total including tip.

You might be interested in
The Perfect square numbers between 100 and 200 are ____<br> Pls help.
svetlana [45]

Step-by-step explanation:

The perfect square numbers between 100 and 200 are :

10^2 =100

11^2 =121

12^2 =144

13^2 =169

14^2 =196

4 0
3 years ago
What is the slope of the line?
postnew [5]

Answer:

its 2

Step-by-step explanation:

rise/run. it goes up one and over .5 each time, so 1÷0.5=2.

4 0
3 years ago
Read 2 more answers
Can u answer these for me with the work shown
babymother [125]

Answer:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

Step-by-step explanation:

Required

Simplify

Solving (1):

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}

Factorize the numerator and the denominator

\frac{x^2(x + 2) -9(x+2)}{x(x^2-x-6)}

Factor out x+2 at the numerator

\frac{(x^2 -9)(x+2)}{x(x^2-x-6)}

Express x^2 - 9 as difference of two squares

\frac{(x^2 -3^2)(x+2)}{x(x^2-x-6)}

\frac{(x -3)(x+3)(x+2)}{x(x^2-x-6)}

Expand the denominator

\frac{(x -3)(x+3)(x+2)}{x(x^2-3x+2x-6)}

Factorize

\frac{(x -3)(x+3)(x+2)}{x(x(x-3)+2(x-3))}

\frac{(x -3)(x+3)(x+2)}{x(x+2)(x-3)}

Cancel out same factors

\frac{(x+3)}{x}

Hence:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

Solving (2):

\frac{3x^2 - 5x - 2}{x^3 - 2x^2}

Expand the numerator and factorize the denominator

\frac{3x^2 - 6x + x - 2}{x^2(x- 2)}

Factorize the numerator

\frac{3x(x - 2) + 1(x - 2)}{x^2(x- 2)}

Factor out x - 2

\frac{(3x + 1)(x - 2)}{x^2(x- 2)}

Cancel out x - 2

\frac{3x + 1}{x^2}

Hence:

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

Solving (3):

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}

Express x^2 - 9 as difference of two squares

\frac{6 - 2x}{x^2 - 3^2} * \frac{15 + 5x}{4x}

Factorize all:

\frac{2(3 - x)}{(x- 3)(x+3)} * \frac{5(3 + x)}{2(2x)}

Cancel out x + 3 and 3 + x

\frac{2(3 - x)}{(x- 3)} * \frac{5}{2(2x)}

\frac{3 - x}{x- 3} * \frac{5}{2x}

Express 3 - x as -(x - 3)

\frac{-(x-3)}{x- 3} * \frac{5}{2x}\\

-1 * \frac{5}{2x}

-\frac{5}{2x}

Hence:

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

Solving (4):

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x}

Expand x^2 - 6x + 9 and factorize 5x - 15

\frac{x^2 -3x -3x+ 9}{5(x - 3)} / \frac{5}{3-x}

Factorize

\frac{x(x -3) -3(x-3)}{5(x - 3)} / \frac{5}{3-x}

\frac{(x -3)(x-3)}{5(x - 3)} / \frac{5}{3-x}

Cancel out x - 3

\frac{(x -3)}{5} / \frac{5}{3-x}

Change / to *

\frac{(x -3)}{5} * \frac{3-x}{5}

Express 3 - x as -(x - 3)

\frac{(x -3)}{5} * \frac{-(x-3)}{5}

\frac{-(x-3)(x -3)}{5*5}

\frac{-(x-3)^2}{25}

Hence:

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

Solving (5):

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}

Factorize the numerator and expand the denominator

\frac{x^2(x - 1) -1(x - 1)}{x^2 - x-x+1}

Factor out x - 1 at the numerator and factorize the denominator

\frac{(x^2 - 1)(x - 1)}{x(x -1)- 1(x-1)}

Express x^2 - 1 as difference of two squares and factor out x - 1 at the denominator

\frac{(x +1)(x-1)(x - 1)}{(x -1)(x-1)}

x +1

Hence:

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

Solving (6):

\frac{9x^2 + 3x}{6x^2}

Factorize:

\frac{3x(3x + 1)}{3x(2x)}

Divide by 3x

\frac{3x + 1}{2x}

Hence:

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

Solving (7):

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x}

Change / to *

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Expand

\frac{x^2-2x-x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Factorize

\frac{x(x-2)-1(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

\frac{(x-1)(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

Cancel out x - 2 and x - 1

\frac{1}{4x} * \frac{12x^2}{x} * \frac{x}{1}

Cancel out x

\frac{1}{4x} * \frac{12x^2}{1} * \frac{1}{1}

\frac{12x^2}{4x}

3x

Hence:

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

8 0
3 years ago
What is an equation of the line that passes through the points (-6, -3) and<br> (-3, -5)?
RUDIKE [14]

find the gradient = change in y/change in X

-5 - -3/-3 - -6

= -2/3

take any two point say -3,-5 and equate to the gradient

Y - 5 /X - 3 = -2/3

cross multiply

3y - 15 = -2x + 6

3y = -2x +6 + 15

3y = -2x + 21

y = -2/3x +7

7 0
3 years ago
What is the given point of m= -2, (2,5)
kap26 [50]

Answer: i think it's (-4,-10)=m

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Write a polynomial function with rational coefficients so that P(x) = 0 has the given roots. 4, 16, and 1 + 9i
    5·1 answer
  • Justin's dog eats 3/4 a cup of food a day Mason's puppy eats 1/3 of a cup of food a day how much more food does Justin's dog eat
    12·2 answers
  • Evaluate the following expression<br> 1/5^-2
    7·1 answer
  • Can the ratio of a parents age to his or hers childs age ever be exactly 3:2
    7·2 answers
  • What is 2.368 rounded <br> to the nearest hundredth.
    13·1 answer
  • Need Help What Is -10r+9r
    14·2 answers
  • Find the product of (n4+7)2
    12·1 answer
  • Find the number that makes the ratio equivalent to 1:8.<br> 7:__
    12·2 answers
  • Sole <br> x/5 = 10<br> 1.x=50 2.x=2 3.x=15 4.x=5
    14·1 answer
  • A farmer plans to build the small silo shown to store chicken feed. What is the circumference of the base of the silo if it can
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!