<h3><u>Answer;</u></h3>
Carbon-14 levels in a sample are undetectable after approximately 9 half lives
<h3><u>Explanation;</u></h3>
- <em><u>The half life of Carbon-14 is 5,730 years . Half life is the time taken by a radioactive material to decay by half of its original mass. Therefore, it would take a time of 5730 years for a sample of 100 g of carbon-14 to decay to 50 grams</u></em>
- <em><u>A period of 50,000 years, is equivalent to; </u></em>
<em><u> 50,000÷5,730 </u></em>
<em><u>= 8.73 half lives</u></em>
<em>Which is approximately equal to 9 half lives.</em>
- Therefore, if the age of an object older than 50,000 years cannot be determined by radiocarbon dating, then <em><u>Carbon-14 levels in a sample are undetectable after approximately 9 half lives</u></em>.
In a distance time graph, when the x and y values are positive (in first quadrant), the runner is moving forward.
While, if the distance value ( in the y axis) is negative, the runner is moving backwards ( towards the start) .
Hope it helps :)
A. Increase is correct because the statement said the moons gravitational "PULL"
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as

now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say



So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.