Answer:
49.07 miles
Explanation:
Angle between two ships = 110° = θ
First ship speed = 22 mph
Second ship speed = 34 mph
Distance covered by first ship after 1.2 hours = 22×1.2 = 26.4 miles = b
Distance covered by second ship after 1.2 hours = 34×1.2 = 40.8 miles = c
Here the angle between the two sides of a triangle is 110° so from the law of cosines we get
a² = b²+c²-2bc cosθ
⇒a² = 26.4²+40.8²-2×26.4×40.8 cos110
⇒a² = 2408.4
⇒a = 49.07 miles
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Answer:
nine times as much.
Explanation:
K.E of A = 9 times K.E of B
Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):
