One way that I would really describe these kind of mirrors would be like first, these kind of mirrors are for sure <span>virtual, upright, smaller. And this would be only due mainly because this the kind of mirror this would be. So based from my information. So based from your options, the answer would most likely be one of the options that would practically fit this. This would be known to be "</span><span> upright and smaller than object".</span>
The element that has the smallest atomic radius is <u>titanium</u>
<em><u>explanation</u></em>
- Calcium,potassium, scandium and titanium are in period 4 in the periodic table.
- Generally the atomic radius decreases across the period (from the left to the right) . This is because across the period there is increase in nuclear charge which make electrons been strongly attracted to the nuclear.
- Titanium is in atomic number 22 thus it has more nuclear charge that calcium,potassium and scandium therefore titanium has the smallest atomic radius.
Answer:
ΔH = -55.92 kJ
Explanation:
<u>Step 1:</u> Data given
1 mol NaOH and 1 mol HBr initially at 22.5 °C are mixed in 100g of water
After mixing the temperature rises to 83 °C
Specific heat of the solution = 4.184 J/g °C
Molar mass of NaOH = 40 G/mol
Molar mass of HBr = 80.9 g/mol
<u>Step 2: </u>The balanced equation
NaOH + HBr → Na+(aq) + Br-(aq) + H2O(l)
<u>Step 3:</u> mass of NaOH
Mass = moles * Molar mass
Mass NaOH = 1 * 40 g/mol
Mass NaOH = 40 grams
Step 4: Mass of HBr
Mass HBr = 1 mol * 80.9 g/mol
Mass HBr = 80.9 grams
Step 5: Calculate ΔH
ΔH = m*c*ΔT
ΔH= (100 + 40 + 80.9) * 4.184 * (83-22.5)
ΔH= 220.9 * 4.184 * 60.5
ΔH= 55916.86 J = 55.92 kJ
Since this is an exothermic reaction, the change in enthalpy is negative.
ΔH = -55.92 kJ
I think it is aaaaaaaa I think it's aaa
the molecules in a liquid are loosely arranged, and are arranged randomly