Answer:
11419 J/g/ 11.419 KJ/g
Explanation:
H=MCQ
H=225×2.03×(-15-10)
H=225×2.03(25) Note; negative sign is of no use
H=11419J/g
1. A soluble salt can be prepared by reacting an acid with a suitable insoluble reactant including:
a metal
a metal oxide
a carbonate
3. I don’t know this one
4. A term base or glossary is a database containing single words or expressions related to a specific subject.
5. Strong acid is an acid that ionizes completely in aqueous solution. It always loses a proton (H+) when dissolved in water. Weak acid is an acid that ionizes partially in a solution. ... Because the rate of reaction depends upon the degree of dissociation αand strong acids have higher degrees of dissociation.
im not sure of the rest
Cation and an anion the differences in charge make them attracted to each other
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.