Answer:
y = 10.2 m
Explanation:
It is given that,
Charge, 
It is placed at a distance of 9 cm at x axis
Charge, 
It is placed at a distance of 16 cm at x axis
We need to find the point on the y-axis where the electric potential zero. The net potential on y-axis is equal to 0. So,

Here,

So,

Squaring both sides,

So, at a distance of 10.2 m on the y axis the electric potential equals 0.
Answer:
well, as u can tell the top layer will always be the youngest layer aka the newest layer. The farther u go down the older the layers get. So the deeper u dig the farther back in time we see.
Explanation:
X=1/2 at^2
3.1=1/2 a *0.64
a=9.68
v=at
v=0.8*9.6875=7.75
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium is reached, i.e. until their temperatures are equal. We say that heat flows from the hotter to the cooler object. Heat is energy on the move.
Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Answer:
Increasing the tension on a string increases the speed of a wave, which increases the frequency (for a given length). Pressing the finger at different places changes the length of string, which changes the wavelength of standing wave, affecting the frequency.
Explanation: