According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
Answer:
The distance is
=
7
m
Explanation:
Apply the equation of motion
s
(
t
)
=
u
t
+
1
2
a
t
2
The initial velocity is
u
=
0
m
s
−
1
The acceleration is
a
=
2
m
s
−
2
Therefore, when
t
=
3
s
, we get
s
(
3
)
=
0
+
1
2
⋅
2
⋅
3
2
=
9
m
and when
t
=
4
s
s
(
4
)
=
0
+
1
2
⋅
2
⋅
4
2
=
16
m
Therefore,
The distance travelled in the fourth second is
d
=
s
(
4
)
−
s
(
3
)
=
16
−
9
=
7
m
Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
Convection is the circular motion that occurs as hotter air or liquid increases when the cooler air or liquid drops down, and has faster moving molecules, rendering it less dense. Convection currents within the earth shift layers of magma, and currents are formed by convection in the ocean.