Answer:
Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Explanation:
As we know that zinc reacts with copper sulfate
so the reaction is given as

so here we have




Now total mass of reactant is given as

Mass of the product is given as

Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁ ![ln[\frac{P_{1} }{P_{2} }]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7BP_%7B1%7D%20%7D%7BP_%7B2%7D%20%7D%5D)
= <em>mRT</em>₁
[∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039) ![ln[\frac{2.0}{1.0}]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7B2.0%7D%7B1.0%7D%5D)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> = 
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
(3 m) / (2 mm/yr) = (3,000mm)/(2mm/yr) = 1,500 yrs.
This is the time required to age approx 75 generations of the best wine.
Answer:
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
Explanation:
Given data
initial circumference = 165 cm
rate = 12.0 cm/s
magnitude = 0.500 T
tome = 9 sec
to find out
emf induced and direction
solution
we know emf in loop is - d∅/dt ........1
here ∅ = ( BAcosθ)
so we say angle is zero degree and magnetic filed is uniform here so that
emf = - d ( BAcos0) /dt
emf = - B dA /dt ..............2
so area will be
dA/dt = d(πr²) / dt
dA/dt = 2πr dr/dt
we know 2πr = c,
r = c/2π = 165 / 2π
r = 26.27 cm
c is circumference so from equation 2
emf = - B 2πr dr/dt ................3
and
here we find rate of change of radius that is
dr/dt = 12/2π = 1.91
cm/s
so when 9.0s have passed that radius of coil = 26.27 - 191 (9)
radius = 9.08
cm
so now from equation 3 we find emf
emf = - (0.500 ) 2π(9.08
) 1.91 
emf = - 0.005445
and magnitude of emf = 0.005445 V
so
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
The answer would be "the vector sum of forces acting on a particle or body."
Hope that helped ^^