The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
<h3>How to analyze quadratic equations</h3>
In this question we have a graph of a <em>quadratic</em> equation translated to another place of a <em>Cartesian</em> plane, whose form coincides with the <em>vertex</em> form of the equation of the parabola, whose form is:
g(x) = C · (x - h)² - k (1)
Where:
- (h, k) - Vertex coordinates
- C - Vertex constant
By direct comparison we notice that (h, k) = (5, 1) and C = 1. Now we proceed to check if the points (x, y) = (2, 10) and (x, y) = (8, 10) belong to the parabola.
x = 2
g(2) = (2 - 5)² + 1
g(2) = 10
x = 8
g(8) = (8 - 5)² + 1
g(8) = 10
The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
To learn more on parabolae: brainly.com/question/21685473
#SPJ1
We have a line y = 1/3x -6
We want a line that is perpendicular to this line
Perpendicular lines have slopes that multiply to -1
1/3 * m = -1
3 * 1/3 *m = -1 * 3
m = -3
The slope of the perpendicular line is -3
y = mx+b where m is the slope and b is the y intercept
y = -3x+b
We have a point on the line ( 7 ,-23)
Substitute this point into the equation
-23 = -3(7)+b
-23 = -21+b
Add 21 to each side
-23+21 = -21+21+b
-2 = b
y = -3x-2
In slope intercept form, the line perpendicular passing through (7,-23) is
y = -3x-2
Answer: x = 6
<u>Step-by-step explanation:</u>
2[3x - (4x - 6)] = 5(x - 6)
2[3x - 4x + 6] = 5x - 30
2[-x + 6] = 5x - 30
-2x + 12 = 5x - 30
<u>+2x </u> <u>+2x </u>
12 = 7x - 30
<u>+30 </u> <u> +30 </u>
42 = 7x

6 = x
They are equal...1/5 is half of 2/10