1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
8

10 m 8 m 6.2 m 8 m What’s the area

Mathematics
1 answer:
hjlf3 years ago
8 0

Answer:

what's the shape? that's important to

You might be interested in
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Find a numerical value if one trigonometric function of x if tan2x-sin2x/sin2x=5
seropon [69]

Answer:

The values of x that satisfy the given equation are:

x1 = 1.183 + nπ

x2 = -1.183 + nπ

Step-by-step explanation:

Given tan²x - sin²x/sin²x = 5

Simplifying this, we have

tan²x - 1 = 5

Adding 1 to both sides, we have

tan²x = 6

Because tan²x = (tanx)², we can write as

(tanx)² = 6

Taking square roots of both sides, we have.

tanx = ±√6

x = arctan(±√6) + nπ

≈ 1.183 + nπ or -1.183 + nπ

4 0
3 years ago
Help me solve this problem please
Orlov [11]

Answer:

C. 16

Step-by-step explanation:

y^2-z^2

(-5)^2-(-3)^2

25-9

16

3 0
3 years ago
Read 2 more answers
A cylinder has a radius of 5 inches and a height of 9 inches. What is the volume of the cylinder in cubic inches? Use 3.14 for π
zlopas [31]
Okkaay so this would be 3.14 x (5x5) x 9 = <span>706.5
V=</span>πr2h
6 0
3 years ago
Which best describes the effect on the x-intercept of the graph of y=34x−3 if the slope is changed to −34
lesantik [10]

Answer:

The last option: The x-intercept becomes negative and the new line intersects the original line.

Step-by-step explanation:

Remember that when finding the x-intercept you set y to 0.

Let's compare the two equations when we solve for x:

0=34x-3          0=-34x-3

1. Add 3 to both sides of the equations

3=34x               3=-34x

2. Divide the coefficients

\frac{3}{34}=x                   \frac{3}{-34}=x

We know that the new slope does not remain the same as stated in the first and third options. In order for two lines to be parallel, the slopes must be exactly the same, so the second option is incorrect. Therefore, the last option is correct.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Trevor Benjamin is a salesperson who is paid a monthly salary of $500 plus 2% commission on sales. Write an equation that repres
    9·2 answers
  • At Susie's school, 5/8 of all students play sports. Of the students who play sports, 2/5 play soccer. What fraction of the stude
    15·2 answers
  • If a graph of a polynomial touches the x axis, the multiplicity of this root/zero/solution/intercept is _________. If a graph of
    6·1 answer
  • What is the degree of the polynomial 2x3 - 3x2 + 4x + 5
    9·1 answer
  • Solve for x<br> 1(x-2) = -5.5
    14·2 answers
  • Which expression is equivalent to -1/2(1/4x-3/8)?
    7·2 answers
  • HELP ME PLEASE!!!! I am failing this class and don’t know what to do.
    14·1 answer
  • What is the area of the base ? / / / / /
    8·1 answer
  • 13 The complement of an
    8·1 answer
  • Explain type i error and give an example. explain type ii error and give an example. what is the best way to reduce both kinds o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!