I think
sqrt 7x^2 - 7*sqrt 49x
x sqrt7 - 7 (7) sqrtx
x sqrt7 - 49 sqrtx
<span>h > t, u < t
can be written together either of these two ways:
u < t < h
or
h > t > u
And it could be any of these 120 numbers:
210 310 320 321 410 420 421 430 431 432 510 520
521 530 531 532 540 541 542 543 610 620 621 630
631 632 640 641 642 643 650 651 652 653 654 710
720 721 730 731 732 740 741 742 743 750 751 752
753 754 760 761 762 763 764 765 810 820 821 830
831 832 840 841 842 843 850 851 852 853 854 860
861 862 863 864 865 870 871 872 873 874 875 876
910 920 921 930 931 932 940 941 942 943 950 951
952 953 954 960 961 962 963 964 965 970 971 972
973 974 975 976 980 981 982 983 984 985 986 987
</span>
Use the app Photomath it literally helps with everything and it explains
Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
2x + 21 = 35
hope this helps