Answer:
n=7
Step-by-step explanation:
(7^2)^4= n^8
We know that a^b^c = a^(b*c)
7^(2*4) = n^8
7^8 = n^8
Since the exponents are the same, the bases must be the same
n=7
Factor and group common ones
60=2*2*3*5*x*x*x*x*y*y*y*y*y*y*y
45x^5^5=3*3*5*x*x*x*x*x*y*y*y*y*y
75x^3y=3*5*5*x*x*x*y
the commmon gropu to all is 3*5*x*x*x*y=15x^3y
Answer:
C and D
Step-by-step explanation:
Equating the line A and the parabola, we get
-3x + 2 = x² - 3x + 4
0 = x² - 3x + 4 +3x - 2
0 = x² + 2
-2 = x²
which has no real solutions. Then, the line A and the parabola don't intersect each other.
Equating the line B and the parabola, we get
-3x + 3 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 3
0 = x² + 1
-1 = x²
which has no real solutions. Then, the line B and the parabola don't intersect each other.
Equating the line C and the parabola, we get
-3x + 5 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 5
0 = x² - 1
1 = x²
√1 = x
which has 2 solutions, x = 1 and x = -1. Then, the line C and the parabola intersect each other.
Equating the line D and the parabola, we get
-3x + 6 = x² - 3x + 4
0 = x² - 3x + 4 + 3x - 6
0 = x² - 2
2 = x²
√2 = x
which has 2 solutions, x ≈ 1.41 and x ≈ -1.41. Then, the line D and the parabola intersect each other.
Answer:
This is exponential growth
Step-by-step explanation:
The amount by which the function is increasing from point to point is increasing, so it must be a quadratic or exponential function. If it was a quadratic, the amount it increases by would be increasing by a steady amount. (Ex. x^2 increases by how much it increased the last time + 2). But because this is not what the data shows, the function must be exponential.