This is a cube root, so we look for factors of 162 which are perfect cubes.
Find the prime factors of 162:-
162 = 2 * 3 * 3 * 3* 3
27 = 3^3 is a perfect cube
162 = 6 * 27
so ^3√ 162 = ^3√6 * ^3√27 = ^3√6 * 3
so the simplest form is 3 ^3√6
No it doesn’t make any of them true
Answer:
x = 181 and y = 97
Step-by-step explanation:
let called the first number is x
the second number would be called y
We are given that:
x + y = 278 (1)
x = y + 84 (2)
Let change x in (2) into (1):
y + 84 + y = 278
2y + 84 = 278
Subtract 84 from both side, we got:
2y + 84 - 84 = 278 - 84
2y + 0 = 194
Divide both side by 2, we got:
2y / 2 = 194 / 2
y = 97
Because y = 97 and x + y = 278 so x would equal:
x + 97 = 278
Subtract 97 from both side, we got:
x + 97 - 97 = 278 - 97
x + 0 = 181
x = 181 and y = 97
Hope this helped :3
Answer:3
Step-by-step explanation: