Answer:
A) AAS; B) LA; C) ASA
Step-by-step explanation:
AAS is the Angle-Angle-Side congruence statement. It says that if two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of a second triangle, then the triangles are congruent. In these triangles, ∠E≅∠K, ∠F≅∠L, and DE≅JK. These are two angles and a non-included side; this is AAS.
LA is the leg-acute theorem. It states that if a leg and acute angle of one triangle is congruent to the corresponding leg and acute angle of another triangle, then the triangles are congruent.
The leg we have congruent from each triangle is DE and JK. We also have ∠E≅∠K and ∠F≅∠L, both pairs of which are acute. This is the LA theorem.
ASA is the Angle-Side-Angle congruence statement. It says that if two angles and an included side of one triangle are congruent to the corresponding two angles and included side of another triangle, then the triangles are congruent.
We have that ∠D≅∠J, DE≅JK and ∠E≅∠K. This gives us two angles and an included side, or ASA.
95n+75 is less than or equal to 645. 645-75=570. 95n is less than or equal to 570. 570/95=6. A maximum of six nights
For this we will use equation:
H = starting height + rate_of_growth*periods
We can mark H with index w to represent how many weeks have passed.
Because all of this we can write:
Hw = 200 + 0.5*w
To calculate height after some number of weeks all you need to do is to exchange w with number of weeks.