<h2>Answer with Explanation </h2>
I have been as of late pondering, on the off chance that I take a sufficiently incredible vitality source (photon) and I have an ideal mirror precisely before it and expect a "producer" shot the light towards the mirror. As impeccable mirrors assimilate no vitality of ANY sort from photons, should this imply the ideal mirrors could never move because of exchange of force of the light? it depends on the mass of the mirror, obviously. Your ideal mirror would have a vast mass, in which case it could assimilate the force change, without engrossing any vitality. A reflection of limited mass will ingest some vitality in a crash that will change the vitality and along these lines the wavelength of the photon. There is no logical inconsistency here.
1. T
2. <span>unwind the DNA double helix during transcription
3. ribosomes
4. transcription
5. replication</span>
Answer:
A food web consists of all the food chains in a single ecosystem.
Explanation:
Hope this helps, Mark me brainlist, Please.
Answer:
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, therefore the individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow very slowly[3] and live very long, with some specimens known to be as much as 1,000 years old.[citation needed] Because of their superficial resemblance, they are sometimes mistaken for palms or ferns, but they are not closely related to either group.
Cycads are gymnosperms (naked seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones.
Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots).[4] These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans.[5][6]
Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[7] The plant has a very long fossil history, with evidence that they existed in greater abundance and in greater diversity before the Jurassic and late Triassic mass extinction events.
Explanation:
~Dr.Smiley~
(Jane)
Answer:
The correct answer is - eukaryotes.
Explanation:
Eukaryotic organisms are the organisms that have membrane-bound organelles or compartments in their cells that play different types of roles in the cell such as assisting in cellular respiration, photosynthesis, packaging and modifying the proteins, and also helps in transporting them.
In archaea, bacteria and viruses lack true membrane-bound organelles in their cells and found very limited cell organelles like ribosomes and others but no membrane-bound organelles at extent of eukaryotic cells.