Answer:
8.2+/-0.25
= ( 7.95, 8.45) years
the 95% confidence interval (a,b) = (7.95, 8.45) years
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 8.2 years
Standard deviation r = 1.1 years
Number of samples n = 75
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
8.2+/-1.96(1.1/√75)
8.2+/-1.96(0.127017059221)
8.2+/-0.248953436074
8.2+/-0.25
= ( 7.95, 8.45)
Therefore the 95% confidence interval (a,b) = (7.95, 8.45) years
This can be mathematically expressed to
250 + X = 1075
where X represents the parts you produce before the shift ends
Transpose 250 to the other side by subtracting each side by 250
Thus, it goes like this
X = 1075 - 250
X = 825
You produced 825 parts in the middle of the shift.
Here it is...........................
Answer:
They both have the same y-intercept
one is a straight line and the other is not
I used my brain to solve it.please mark me as the brainiest,It would mean a lot to me.
Answer:
The amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.
Step-by-step explanation:
Consider the provided information.
A chemical flows into a storage tank at a rate of (180+3t) liters per minute,
Let
is the amount of chemical in the take at <em>t </em>time.
Now find the rate of change of chemical flow during the first 20 minutes.

![\int\limits^{20}_{0} {c'(t)} \, dt =\left[180t+\dfrac{3}{2}t^2\right]^{20}_0](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B20%7D_%7B0%7D%20%7Bc%27%28t%29%7D%20%5C%2C%20dt%20%3D%5Cleft%5B180t%2B%5Cdfrac%7B3%7D%7B2%7Dt%5E2%5Cright%5D%5E%7B20%7D_0)


So, the amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.