The numbers are 15, 17 and 19
Step-by-step explanation:
Part A:
So the height is going to be x when you fold the sides up. So that's one part of the volume but for the width it was going to be 4 but since two corners were cut out with the length x the new width is going to be (4-2x). The same thing applies for the length which should be 8 inches but since two corners were removed with the length x it's now (8-2x)
v = x(4-2x)(8-2x)
Part B:
The volume can be graphed although there must be a domain restriction since the height, width, or length cannot be negative. So let's look at each part of the equation
so for the x in front it must be greater than 0 to make sense
for the (4-2x), the x must be less than 2 or else the width is negative.
for the (8-2x) the x must be less than 4 or else the length is negative
so the domain is going to be restricted to 0 < x < 2 so all the dimensions are greater than 0
By using a graphing calculator you can see the maximum of the given equation with the domain restrictions is 0.845 which gives a volume of 12.317
A should be the correct answer
Answer:
(6,1)
Step-by-step explanation:
after switching the equations from y=mx+b, graph both equations. you will see that the point of intersection is (6,1)
By definition of covariance,
![\mathrm{Cov}(X,Y)=\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5B%28X-%5Cmathbb%20E%5BX%5D%29%28Y-%5Cmathbb%20E%5BY%5D%29%5D)
![\mathrm{Cov}(X,Y)=\mathbb E[XY-\mathbb E[X]Y-X\mathbb E[Y]+\mathbb E[X]\mathbb E[Y]]=\mathbb E[XY]-\mathbb E[X]\mathbb E[Y]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5BXY-%5Cmathbb%20E%5BX%5DY-X%5Cmathbb%20E%5BY%5D%2B%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%5D%3D%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D)
We have
![\mathbb E[(aX-b)(cY-d)]=\mathbb E[acXY-adX-bcY+bd]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%28aX-b%29%28cY-d%29%5D%3D%5Cmathbb%20E%5BacXY-adX-bcY%2Bbd%5D)
![=ac\mathbb E[XY]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%3Dac%5Cmathbb%20E%5BXY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
![\mathbb E[aX-b]=a\mathbb E[X]-b](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%3Da%5Cmathbb%20E%5BX%5D-b)
![\mathbb E[cY-d]=c\mathbb E[Y]-d](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BcY-d%5D%3Dc%5Cmathbb%20E%5BY%5D-d)
![\mathbb E[aX-b]\mathbb E[cY-d]=ac\mathbb E[X]\mathbb E[Y]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%5Cmathbb%20E%5BcY-d%5D%3Dac%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
Putting everything together, we find the covariance reduces to
![\mathrm{Cov}(aX-b,cY-d)=ac(\mathbb E[XY]-\mathbb E[X]\mathbb E[Y])=ac\mathrm{Cov}(X,Y)](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28aX-b%2CcY-d%29%3Dac%28%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%29%3Dac%5Cmathrm%7BCov%7D%28X%2CY%29)
as desired.