Value of the derivative of g(x)=8-10Cosx at 'x=0' is?
1 answer:
Answer:
g'(0) = 0
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
Brackets
Parenthesis
Exponents
Multiplication
Division
Addition
Subtraction
<u>Algebra I</u>
<u>Pre-Calculus</u>
<u>Calculus</u>
Derivatives Derivative Notation The derivative of a constant is equal to 0 Derivative Property: Trig Derivative: Step-by-step explanation:
<u>Step 1: Define</u>
g(x) = 8 - 10cos(x)
x = 0
<u>Step 2: Differentiate</u>
Differentiate [Trig]: g'(x) = 0 - 10[-sin(x)] Simplify Derivative: g'(x) = 10sin(x)
<u>Step 3: Evaluate</u>
Substitute in <em>x</em>: g'(0) = 10sin(0) Evaluate Trig: g'(0) = 10(0) Multiply: g'(0) = 0
You might be interested in
Answer:
50
Step-by-step explanation:
so half a dollar is $0.50. We multiply by 9, which gives you $4.50. But the customer gave $5, so they would get $0.50 back.
Answer:
100x^2-36=4(5x+3)(5x-3)
It is certainly possible for a function decreasing over a certain interval to be negative, but no rule that says it must be. On the other hand, where the function is decreasing, the rate of change of the function must be negative.
Answer:
l=41.5
Step-by-step explanation:
Using the formula A=wl
l= = =41.5