The answer is B because its 9 hundred and thousandths is the smallest place
Answer:
Step one
Step-by-step explanation:
Did not add to both sides
Answer:
-6
Step-by-step explanation:
1) combine all like terms
(bring 3q to the left and 11 to the right so you can combine the like terms)
(doing that will make 3q negative and 11 negative since your moving them so their sign changes as well)
8q-3q=-19-11
5q=-30
Q=-6
Hope this helps
Answer:
The third option listed: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Step-by-step explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B2%5E32x%7D%20-3%5Csqrt%5B3%5D%7B2%5E3x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%2A2%5Csqrt%5B3%5D%7B2x%7D%20-3%2A2%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore this is the simplified radical expression: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
The answer is y-6 hope it helps