1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
3 years ago
12

Helpppppppppppppppppppppppppppppppppppppppppppppppp

Mathematics
1 answer:
Harman [31]3 years ago
3 0

Answer:

The required expression is: \mathbf{\frac{5(x+y)}{-8x}}

Option C is correct option.

Step-by-step explanation:

We need to find the equation that fits the description.

a) the expression is the quotient of two quantities

The quotient is expressed as \frac{a}{b}

where a is numerator and b is denominator

b) The numerator of the expression is product of 5 and the sum of x and y

Sum of x and y = x+y

Product of 5 and Sum of x and y = 5(x+y)

So, Numerator of the expression is 5(x+y)

c) The denominator is the product of negative 8 and x

Product of negative 8 and x = -8x

So, denominator of the expression is -8x

Now, The required expression is: \mathbf{\frac{5(x+y)}{-8x}}

Option C is correct option.

You might be interested in
The graph of which function passes through (0,4) and has a minimum value at (StartFraction 3 pi Over 2 EndFraction, 3)? f (x) =
solniwko [45]

Answer:

f(x) = sin(x) + 4  Let me know if you don't see why.

Step-by-step explanation:

As much as I hate it I think it might be best to check each one.  

sin(x) has a point at (0,0) so that's not right.

sin(x)+4 has (0,4) as a point and a minimum at (3*pi/2+2*pi*n,3) where n is some integer.  if we have n = 0 then it becomes (3*pi/2, 3) So that looks like our answer.

cos(x) + 3 has a point at (0,4) then minimums at (pi+2*pi*n, 2)  the y coordinate is wrong so this won't work

-3sin(x) has a point at (0,0) so that's wrong

4cos(x) has a point at (0,4) then minimums at (pi+2*pi*n, -4) which again has the wrong y value so this is wrong.

Let me know if you don't understand how I got the results I did, I would be happy to explain.  

7 0
3 years ago
Read 2 more answers
I need help.. i really want to go sleep.. thank you so much...
Effectus [21]

Answer:

1) True 2) False

Step-by-step explanation:

1) Given  \sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i}

To verify that the above equality is true or false:

Now find \sum\limits_{k=0}^8\frac{1}{k+3}

Expanding the summation we get

\sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{0+3}+\frac{1}{1+3}+\frac{1}{2+3}+\frac{1}{3+3}+\frac{1}{4+3}+\frac{1}{5+3}+\frac{1}{6+3}+\frac{1}{7+3}+\frac{1}{8+3} \sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

Now find \sum\limits_{i=3}^{11}\frac{1}{i}

Expanding the summation we get

\sum\limits_{i=3}^{11}\frac{1}{i}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

 Comparing the two series  we get,

\sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i} so the given equality is true.

2) Given \sum\limits_{k=0}^4\frac{3k+3}{k+6}=\sum\limits_{i=1}^3\frac{3i}{i+5}

Verify the above equality is true or false

Now find \sum\limits_{k=0}^4\frac{3k+3}{k+6}

Expanding the summation we get

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3(0)+3}{0+6}+\frac{3(1)+3}{1+6}+\frac{3(2)+3}{2+6}+\frac{3(3)+4}{3+6}+\frac{3(4)+3}{4+6}

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}+\frac{12}{8}+\frac{15}{10}

now find \sum\limits_{i=1}^3\frac{3i}{i+5}

Expanding the summation we get

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3(0)}{0+5}+\frac{3(1)}{1+5}+\frac{3(2)}{2+5}+\frac{3(3)}{3+5}

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}

Comparing the series we get that the given equality is false.

ie, \sum\limits_{k=0}^4\frac{3k+3}{k+6}\neq\sum\limits_{i=1}^3\frac{3i}{i+5}

6 0
3 years ago
2 poi
jolli1 [7]

Me ayudas por favor es regla de ruffini apretá mi perfil y ve mi pregunta

7 0
3 years ago
What is 19 +(11+37) then added 19 and 11 what is that
IrinaVladis [17]
97, 19+(11+37)=19+(48)=67 and then add 30 because of 19 and 11 and you get 97
7 0
3 years ago
Two Δ are similar. The sides of the first Δ are 2,4,6. The largest side of the second Δ is 24. Find the perimeter of the second
Masja [62]

Answer:

60 units

Step-by-step explanation:

Ratio of the perimeter = ratio of sides

Sides are in the ratio:

6 : 24

1 : 4

Perimeter of the first triangle:

4+5+6 = 15

Perimeter of the second triangle:

4(15) = 60

6 0
3 years ago
Other questions:
  • What is the value of z?
    10·1 answer
  • Tell what you would do to isolate the variable.
    13·1 answer
  • A pizza was divide
    14·2 answers
  • 17 is what percent of 34​
    13·2 answers
  • Mixed problem with fractions <br> 1 over 2 minus 1 over 4
    13·1 answer
  • I need help for number 6 please
    7·2 answers
  • 1+4=5 2+5=12 3+6=21 8+11=?
    5·1 answer
  • This week is representative of how many hours Ricki will work each week during Summer Break. If she earns $9 per hour and there
    12·1 answer
  • What is the scale factor of the following figure which shows triangle A dilated to triangle B?
    15·2 answers
  • Please help i dont know what to do
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!