Answer:
B) 0.230 M
Explanation:
The first step is to <u>balance the reaction</u> between the Ferrous ion and the permanganate ion:

Then we have to <u>calculate the moles</u> of
:



Then using the <u>molar ratio</u> we can find the moles of
:

Finally we can calculate the molarity:

Answer: UV Light is the highest!
Explanation:
Ultraviolet Light has the highest frequency between the three, Visible Light would stay in the middle since its in the middle of the spectrum, thus making Infrared the lowest.
Answer:
Kp = 0.022
Explanation:
<em>Full question: ...With 2.3 atm of ammonia gas at 32. °C. He then raises the temperature, and when the mixture has come to equilibrium measures the partial pressure of hydrogen gas to be 0.69 atm. </em>
<em />
The equilibrium of ammonia occurs as follows:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where Kp is defined as:

<em>Where P represents partial pressure of each gas.</em>
<em />
As initial pressure of ammonia is 2.3atm, its equilibrium concentration will be:
P(NH₃) = 2.3atm - 2X
<em>Where X represents reaction coordinate</em>
<em />
Thus, pressure of hydrogen and nitrogen is:
P(N₂) = X
P(H₂) = 3X.
As partial pressure of hydrogen is 0.69atm:
3X = 0.69
X = 0.23atm:
P(NH₃) = 2.3atm - 2(0.23atm) = 1.84atm
P(N₂) = 0.23atm
P(H₂) = 0.69atm

<h3>Kp = 0.022</h3>
Remember this.
Ionic molecules has ionic bonds
Nonpolar molecules has dispersion (Van del Waals)
Polar molecules could either have hydrogen bonding or Dipole-Dipole. Hydrogen bonding is when you have F, O or N with H, every other polar molecule is dipole-dipole.
a. polar- dipole-dipole
b. polar- hydrogen bonding
c. nonpolar- dispersion
d. nonpolar- dispersion
e. polar- dipole-dipole
f. polar-dipole-dipole
g. nonpolar- dispersion
h. polar- hydrogen bonding.