1) function f(x)
x - 5
f(x) = ----------------
3x^2 - 17x - 28
2) factor the denominator:
3x^2 - 17x - 28 = (3x + 4)(x - 7)
x - 5
=> f(x) = -----------------------
(3x + 4) (x - 7)
3) Find the limits when x → - 4/3 and when x → 7
Lim of f(x) when x → - 4/3 = +/- ∞
=> vertical assymptote x = - 4/3
Lim of f(x) when x → 7 = +/- ∞
=> vertical assymptote x = 7
Answer: there are assympotes at x = 7 and x = - 4/3
Answer:
im trying to find this answer too dont worry :(
Step-by-step explanation:
I dont know
The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
First you want to change the fraction into a decimal on this one the decimal is going to be .3333 now your problem looks like 8-.3333x=16 now subtract the 8 and you get -.3333x=16 now divide by -.3333 and you get -48
Answer:
12, 17, 24
Step-by-step explanation:
To find the first 3 terms, substitute n = 1, 2, 3 into the rule, that is
T₁ = 1² + 2(1) + 9 = 1 + 2 + 9 = 12
T₂ = 2² + 2(2) + 9 = 4 + 4 + 9 = 17
T₃ = 3² + 2(3) + 9 = 9 + 6 + 9 = 24