1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
7

What is the range of the following function ?

Mathematics
1 answer:
vesna_86 [32]3 years ago
8 0

Answer:

All real numbers

Step-by-step explanation:

The range is whatever the output can be. In this case, the output is y. Because the line is going through all numbers vertically, and arrows are going up and down, we can say that the line is going through all y values. Therefore, the range is all real numbers

You might be interested in
Mathematics!! Can anyone help me with this? ^^
Maru [420]
5. I thinks it’s mistake there and teacher meant 6y-5=59

6y=59+5
6y=64
y= 32/3

6.
7y=35-7
7y=28
y=4
7 0
2 years ago
Read 2 more answers
Find X (30,60,90) need help asap asap
Shtirlitz [24]

Answer:

The correct answer will be X = 4

Step-by-step explanation:

Using Pythagoras

AB^2 + BC^2 = AC^2

2^2 + (2√3)^2 = AC^2

4 + (4*3) = AC^2

4+12 = AC ^ 2

AC ^2 = 16

AC = √16 = 4

3 0
3 years ago
Which function represents a parabola that is translated 2 units to the left and 6 units down from the parent function, f(x)=x^2
Luda [366]

Translation involves moving a function along its coordinates

The image of the function is g(x) = (x + 2)^2 - 6

<h3>How to determine the new function</h3>

The parent function is given as:

f(x) = x^2

When the function is translated 2 units left, we have:

f'(x) = (x + 2)^2

When the function is translated 6 units down, we have:

f"(x) = (x + 2)^2 - 6

Rewrite as:

g(x) = (x + 2)^2 - 6

Hence, the image of the function is g(x) = (x + 2)^2 - 6

Read more about translation at:

brainly.com/question/11468584

4 0
3 years ago
Please help, trig is a real problem for me ​
Andreyy89

Answer:

2. cotФ = -\frac{4}{3}

3. sec²Ф - tan²Ф = 1

4. \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5. The value of sin x is \frac{1}{2}

6. cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7. tan(α + β) = -\frac{63}{16}

8. sin(π - Ф) = sin Ф

9. cos 2Ф = -\frac{1}{2}

10. sin 2Ф = 0.96

Step-by-step explanation:

2.

∵ cos Ф = -\frac{4}{5}

∵ 90° < Ф < 180°

- That means Ф lies on the 2nd quadrant

∴ sin Ф is a positive value

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + ( -\frac{4}{5} )² = 1

∴ sin²Ф +  \frac{16}{25} = 1

- Subtract from both sides  \frac{16}{25}

∴ sin²Ф =  \frac{9}{25}

- Take √ for both sides

∴ sinФ = \frac{3}{5}

∵ cotФ = cosФ ÷ sinФ

∴ cotФ = -\frac{4}{5} ÷  \frac{3}{5}

∴ cotФ = -\frac{4}{3}

3.

The expression is sec²Ф - tan²Ф

∵ tan²Ф = sec²Ф - 1

- Substitute tan²Ф by the right hand side in the expression

∴ sec²Ф - tan²Ф = sec²Ф - (sec²Ф - 1)

∴ sec²Ф - tan²Ф = sec²Ф - sec²Ф + 1

- Simplify the right hand side

∴ sec²Ф - tan²Ф = 1

4.

The expression is  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1}

∵ The numerator is sin²∝ + cos²∝

∵ sin²∝ + cos²∝ = 1

∴ The numerator = 1

∵ The denominator is tan²∝ + 1

∵ tan²∝ = \frac{sin^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} + 1

- Change 1 to  fraction \frac{cos^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} +  \frac{cos^{2}\alpha}{cos^{2}\alpha}

- Add the two fractions  

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha+cos^{2}\alpha }{cos^{2}\alpha}

∵ sin²∝ + cos²∝ = 1

∴ tan²∝ + 1 = \frac{1}{cos^{2}\alpha}

∴ The denominator =  \frac{1}{cos^{2}\alpha}

∴  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = \frac{1}{\frac{1}{cos^{2}\alpha}}

- Remember denominator the denominator will be a numerator

∴ \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5.

∵ tan x cos x = \frac{1}{2}

∵ tan x = \frac{sin(x)}{cos(x)}

∴ \frac{sin(x)}{cos(x)} × cos x = \frac{1}{2}

- Simplify it by canceling cos x up with cos x down

∴ sin x = \frac{1}{2}

∴ The value of sin x is \frac{1}{2}

6.

∵ cos(Ф - ∝) = cosФ cos∝ + sinФ sin∝

∵ 45 - 30 = 15

∴ cos 15° = cos(45 - 30)°

- Use the rule above to find the exact value

∵ cos(45 - 30)° = cos 45° cos 30° + sin 45° sin 30°

∵ cos 45° = \frac{\sqrt{2}}{2} and sin 45° =

∵ cos 30° = \frac{\sqrt{3}}{2} and sin 30° = \frac{1}{2}

∴ cos(45 - 30)° =  \frac{\sqrt{2}}{2} ×  \frac{\sqrt{3}}{2} +  

∴ cos(45 - 30)° =  \frac{\sqrt{6}}{4} +  \frac{\sqrt{2}}{4}  = \frac{\sqrt{6}+\sqrt{2}}{4}

∴ cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7.

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∵ cos α = \frac{5}{13} and 0° < α < 90°

- That means α is in the 1st quadrant, then all trigonometry

    ratios are positive

∵ sin²α + cos²α = 1

∴ sin²α + ( \frac{5}{13} )² = 1

∴ sin²α + \frac{25}{169}  = 1

- Subtract  \frac{25}{169}  from both sides

∴ sin²α =  \frac{144}{169}

- Take √ for both sides

∴ sin α =  \frac{12}{13}

∵ tan α = sin α ÷ cos α

∴ tan α = \frac{12}{13} ÷ \frac{5}{13}

∴ tan α = \frac{12}{5}  

∵ sin β = \frac{3}{5} and 0° < β < 90°

∵ sin²β + cos²β = 1

∴ ( \frac{3}{5} )² + cos²β = 1

∴ \frac{9}{25} + cos²β = 1

- Subtract  \frac{9}{25}  from both sides

∴ cos²β =  \frac{16}{25}

- Take √ for both sides

∴ cos β =  \frac{4}{5}

∵ tan β = sin β ÷ cos β

∴ tan β = \frac{3}{5} ÷ \frac{4}{5}

∴ tan β = \frac{3}{4}  

- Substitute the values of tan α and tan β in the tan (α + β)

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∴ tan(α + β) = \frac{\frac{12}{5}+\frac{3}{4}}{1-(\frac{12}{5})(\frac{3}{4})}

∴ tan(α + β) = -\frac{63}{16}

8.

∵ sin(α - β) = sin α cos β - cos α sin β

∴ sin(π - Ф) = sin π cos Ф - cos π sin Ф

∵ sin π = 0 and cos π = -1

∴ sin(π - Ф) = (0) × cos Ф - (-1) × sin Ф

∴ sin(π - Ф) = 0 + sin Ф

∴ sin(π - Ф) = sin Ф

9.

∵ cos 2Ф = 2 cos²Ф - 1

∵ cos Ф = \frac{1}{2}

∴ cos 2Ф = 2 ( \frac{1}{2} )² - 1

∴ cos 2Ф = 2 × \frac{1}{4} - 1

∴ cos 2Ф = \frac{1}{2} - 1

∴ cos 2Ф = -\frac{1}{2}

10.

∵ sin 2Ф = 2 sinФ cosФ

∵ cosФ = 0.6 and 0° < Ф < 90°

- That means Ф is in the 1st quadrant and all its trigonometry

   ratios are positive

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + (0.6)² = 1

∴ sin²Ф + 0.36 = 1

- Subtract 0.36 from both sides

∴ sin²Ф = 0.64

- Take √ for both sides

∴ sinФ = 0.8

- Substitute the values of sinФ and cosФ in the rule above

∴ sin 2Ф = 2(0.8)(0.6)

∴ sin 2Ф = 0.96

4 0
4 years ago
What is the product in simplest form? State any restrictions on the variable. Please show your work.
Zina [86]
I hope this helped. I did everything in one step but u can definitely show more work

4 0
3 years ago
Read 2 more answers
Other questions:
  • In the diagram below, if<br> AEB=50°, find the measure of<br> DEC.
    8·2 answers
  • If Jake earns $8 per hour how much did he earn each day​
    10·1 answer
  • A FedEx freight truck carries three tons of packages 660 miles on 90 gallons of diesel fuel from Miami, Fl to Atlanta, Ga. FedEx
    11·1 answer
  • Help me with this thank you
    15·1 answer
  • is the statement below always, sometimes or never true. Gi at least 2 examples to support your reasoning. The lcm of two numbers
    13·1 answer
  • the sum of two numbers is 30 the difference between three times the first number and twice the second is 60
    10·2 answers
  • kayla works at a coffee shop, and yesterday she earned $6.25 an hour plus $8.50 in tips. Let x represent the number of hours wor
    12·1 answer
  • I really extremely need help! I will give you 5 stars and branilest
    6·1 answer
  • 20 points!!!!!!!!!!!
    10·1 answer
  • When finding the margin of error for the mean of a normally distributed population from a sample, what is the critical probabili
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!