Answer:
13.98 nC
Explanation:
Capacitance depends upon the area of the plates and their distance of separation.
Radius = r = 0.071 m
separation = d = 0.00126 m

here κ = 1 and ε₀ = 8.85 ₓ 10⁻¹² SI units , for free space.
Area = A = π r² = 0.0158 m²
C = [( 8.85 ₓ 10⁻¹² ) ( 0.0158) ]÷ (0.00126) = 1.11 x 10⁻¹⁰ F
Charge = Q = C V = ( 1.11 x 10⁻¹⁰ F )(126) = 13.98 nC
= 14 nC ( rounded to two significant digits)
<span>in this case velocity of airoplane will be
750*sin20'
</span>
Answer:
t = 6 s
Explanation:
This is a free fall exercise
y = y₀ + v₀ t - ½ g t²
If the balloon is released its initial velocity is zero, when it reaches the floor its height is also zero, we substitute
0 = y₀ + 0 - ½ g t2
t = √(2yo / g)
let's calculate
t = √ (2 176.4 / 9.8)
t = 6 s
the balloon must be released 6 s before the person reaches the building
Abrir en Google Traductor
Comentarios
Answer:
1.53seconds
Explanation:
Using first equation of motion :
V=U + at
Where final velocity (V) =+8.3m/s
Initial velocity (U) =+4.4m/s
Acceleration (a) = 0.65m/s^2
time(s)=?
V=U + at
+8.3^2 = +4.4 + 0.65 * t
Making t the subject of the formula :
Therefore, t= ( +8.3 - 4.4)/0.65 = 1.53seconds
Answer:
Examples of Newton's third law of motion are ubiquitous in everyday life. For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.