There are three types of heat conduction through substances. These are named as conduction,convection and radiation .here we have been given convection.
Convection is the type of mode of conduction of heat in which heat will flow though a liquid and gases due to the direct physical movement of particles.In this process the hotter particles will go upward as they become lighter and cooler,heavier particles come downward which after being heated up go upward .Hence a convectional current is formed for which whole of the liquid or gas gets heated.
There are different life examples of convection.
One may take an simple example of water in a container.The water molecules which are present bottom part of the container will be heated up first and go upward.The upper particles will come downward and they will constitute a convectional current.
Another life example is the flow of wind from one region to another region.the air at hotter region will become lighter and goes upward and the wind starts flowing from cold region region in order to occupy the vacant space.
Another example is the hot air balloon rising up..It is also another example of convection of heat
Earths atmosphere, Temperature, Plant life and Oxygen I guess
Answer:
a) m =1 θ = sin⁻¹ λ / d, m = 2 θ = sin⁻¹ ( λ / 2d)
, c) m = 3
Explanation:
a) In the interference phenomenon the maxima are given by the expression
d sin θ = m λ
the maximum for m = 1 is at the angle
θ = sin⁻¹ λ / d
the second maximum m = 2
θ = sin⁻¹ ( λ / 2d)
the third maximum m = 3
θ = sin⁻¹ ( λ / 3d)
the fourth maximum m = 4
θ = sin⁻¹ ( λ / 4d)
b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.
I = I₀ cos² (Ф) (sin x / x)²
Ф = π d sin θ /λ
x = pi a sin θ /λ
where a is the width of the slits
with the values of part a are introduced in the expression and we can calculate intensity of each maximum
c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present
maximum interference d sin θ = m λ
first diffraction minimum a sin θ = λ
we divide the two expressions
d / a = m
In our case
3a / a = m
m = 3
order three is no longer visible
<span>The eastern margin is a convergent boundary subduction zone under the South American Plate and the Andes Mountains, forming the Peru–Chile Trench. The southern side is a divergent boundary with the Antarctic Plate, the Chile Rise, where seafloor spreading permits magma to rise.</span>
To solve this problem, the concepts related to the balance of forces must be applied. In this case the two forces that must be in balance are the Weight and the centripetal force. Both forces are derived from Newton's second law, one of the linear movement and the other of the angular movement. The centripetal force is given by the function

Here,
m = mass
v =Velocity
R = Radius
And the force product of the weight is given under the function

Here,
m = Mass
g = Gravity
As both forces are in balance we will have





Speed would be


Replacing


The radius must be 12.6m