Answer:
0.752 m/s
Explanation:
m1 = 3.00kg
u1 = 5.05m/s
m2 = 2.76kg
u2 = -3.66m/s
According to the law of conservation of momentum,
m1u1 + m2u2 = (m1+m2)v
3(5.05) + 2.76(-3.66) = (5.05+2.76)v
15.15 - 9.2736 = 7.81v
5.8764 = 7.81v
v = 5.8764/7.81
v = 0.752m/s
Acceleration = velocity/time
A= 3.5m/s/15s
A= 0.23m/s^2
Answer:
Magnification will be equal to 3
Explanation:
We have given focal length of the converging lens 
Focal length of the diverging lens 
Object is placed 40 cm to the length of the converging lens d = 40 cm
Combination of the focal length will be equal to


F = 60 cm
So combination of the focal length will be 60 cm
Magnification is given by

So magnification will be equal to 3
Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
The correct answer is
<span>c. one person exerts more force than the other so that the forces are unbalanced.
In fact, the door is initially at rest. In order to move the door, a net force different from zero should be applied, according to Newton's second law:
</span>

<span>where the term on the left is the resultant of the forces acting on the door, m is the door mass and a its acceleration.
In order to move the door, the acceleration must be different from zero. But this means that the resultant of the forces acting on it must be different from zero: this is possible only if the forces applied by the two persons are unbalanced, i.e. one person exerts more force than the other.</span>