She can climb 0.92 m without losing weight.
<u>Explanation</u>:
Gravitational potential energy is the energy consisting of the product of mass, gravity and height.
1 cal = 4184 J
140 cal = 585760 J
Energy = 585760 J, m = 65.0 kg = 65000 g, Efficiency = 20 %
GPE = mgh
where m represents the mass
g represents the gravity,
h represents the height.
585760 = 65000
9.8
h
h = 0.92 m.
Training everyday
..........
Beats are interference patterns between two tones of different frequencies. To prove the skeptic first, play the recorded audio as there are no beats in it. Now take two sound sources with different frequencies. When both sources are turned on, we hear notes that rise and fall at equal intervals. That's what's called beats.
A frequency beat occurs when two waves with different frequencies overlap, causing alternating cycles of constructive and destructive interference between the waves.
When we tap the table with our finger, then put our ear to the table, and tap the table surface as far as 30 cm from our ear. Then the sound of beats on the table will sound louder when we put our ears on the table. So, it can be concluded that solid objects can conduct sound better than air. This is because the molecules or particles of solid objects are denser than air.
Learn more about the beat's frequency at brainly.com/question/14157895
#SPJ4
Answer:
I just took the quiz and got 100% when choosing A.Conservation. Hope this helps:)
Answer:
100 cm³
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure, V is volume, n is number of moles, R is ideal gas constant, and T is absolute temperature.
n and R are constant, so:
P₁V₁/T₁ = P₂V₂/T₂
If we say point 1 is at 40m depth and point 2 is at the surface:
P₂ = 1.013×10⁵ Pa
T₂ = 20°C + 273.15 = 293.15 K
P₁ = ρgh + P₂
P₁ = (1000 kg/m³ × 9.8 m/s² × 40 m) + 1.013×10⁵ Pa
P₁ = 4.933×10⁵ Pa
T₁ = 4.0°C + 273.15 = 277.15 K
V₁ = 20 cm³
Plugging in:
(4.933×10⁵ Pa) (20 cm³) / (277.15 K) = (1.013×10⁵ Pa) V₂ / (293.15 K)
V₂ = 103 cm³
Rounding to 1 sig-fig, the bubble's volume at the surface is 100 cm³.