1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
3 years ago
14

Can someone please help me? Please

Mathematics
1 answer:
vesna_86 [32]3 years ago
3 0
 If length AM = AK then it is isosceles.

M(-1,-6), A(-4,5)

AM=((5-(-6))²+(-4-(-1)))^(1/2)=11.401

A(-4,5) and K(5,-2)

AK=((-2-5)²+(5+4)²)^(1/2)=11.401

so the triangle is isosceles.



You might be interested in
Please help i have an assignment due TODAY i need to get this done
wel

Answer:

r = 50 degrees.

Step-by-step explanation:

r = 50 degrees ( vertical angles are congruent).

3 0
1 year ago
Read 2 more answers
Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
aliya0001 [1]

The Lagrangian

L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(x^4+y^4+z^4-13)

has critical points where the first derivatives vanish:

L_x=2x+4\lambda x^3=2x(1+2\lambda x^2)=0\implies x=0\text{ or }x^2=-\dfrac1{2\lambda}

L_y=2y+4\lambda y^3=2y(1+2\lambda y^2)=0\implies y=0\text{ or }y^2=-\dfrac1{2\lambda}

L_z=2z+4\lambda z^3=2z(1+2\lambda z^2)=0\implies z=0\text{ or }z^2=-\dfrac1{2\lambda}

L_\lambda=x^4+y^4+z^4-13=0

We can't have x=y=z=0, since that contradicts the last condition.

(0 critical points)

If two of them are zero, then the remaining variable has two possible values of \pm\sqrt[4]{13}. For example, if y=z=0, then x^4=13\implies x=\pm\sqrt[4]{13}.

(6 critical points; 2 for each non-zero variable)

If only one of them is zero, then the squares of the remaining variables are equal and we would find \lambda=-\frac1{\sqrt{26}} (taking the negative root because x^2,y^2,z^2 must be non-negative), and we can immediately find the critical points from there. For example, if z=0, then x^4+y^4=13. If both x,y are non-zero, then x^2=y^2=-\frac1{2\lambda}, and

xL_x+yL_y=2(x^2+y^2)+52\lambda=-\dfrac2\lambda+52\lambda=0\implies\lambda=\pm\dfrac1{\sqrt{26}}

\implies x^2=\sqrt{\dfrac{13}2}\implies x=\pm\sqrt[4]{\dfrac{13}2}

and for either choice of x, we can independently choose from y=\pm\sqrt[4]{\frac{13}2}.

(12 critical points; 3 ways of picking one variable to be zero, and 4 choices of sign for the remaining two variables)

If none of the variables are zero, then x^2=y^2=z^2=-\frac1{2\lambda}. We have

xL_x+yL_y+zL_z=2(x^2+y^2+z^2)+52\lambda=-\dfrac3\lambda+52\lambda=0\implies\lambda=\pm\dfrac{\sqrt{39}}{26}

\implies x^2=\sqrt{\dfrac{13}3}\implies x=\pm\sqrt[4]{\dfrac{13}3}

and similary y,z have the same solutions whose signs can be picked independently of one another.

(8 critical points)

Now evaluate f at each critical point; you should end up with a maximum value of \sqrt{39} and a minimum value of \sqrt{13} (both occurring at various critical points).

Here's a comprehensive list of all the critical points we found:

(\sqrt[4]{13},0,0)

(-\sqrt[4]{13},0,0)

(0,\sqrt[4]{13},0)

(0,-\sqrt[4]{13},0)

(0,0,\sqrt[4]{13})

(0,0,-\sqrt[4]{13})

\left(\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

5 0
3 years ago
The graphs below have the same shape. What is the equation of the blue graph?
postnew [5]

Answer:

<h2>C. G(x) = (x - 1)² - 3</h2>

Step-by-step explanation:

f(x) + n - shift the graph of f(x) n units up

f(x) - n - shift the graph of f(x) n units down

f(x - n) - shift the graph of f(x) n units to the right

f(x + n) - shift the graph of f(x) n units to the left

===================================

Look at the picture.

The graph of F(x) shifted 1 unit to the right and 3 units down.

Therefore the equation of the function G(x) is

G(x)=(x-1)^2-3

4 0
3 years ago
If a rectangles width is twice as long as its length. If the perimeter is 36in find its length.
Dmitriy789 [7]
Answer of what is the length is 12. if we add all the sides it has to come as 36,so if length=x then width=2x therefore X+X+2X+2X=36 therefore x=6 then width=2x =12.
4 0
3 years ago
Landon bought 4 pounds of walnuts for $10.92. What is the constant of proportionality that relates the cost in dollars, y, to th
Lunna [17]

Step-by-step explanation:

The constant of proportionality is the ratio of the cost to the number of pounds of walnuts.  In other words, it is the price of one pound of walnuts.

$10.92 / 4 lb = $2.73 / lb

6 0
3 years ago
Other questions:
  • Which statements are true for verifying the solution set of
    9·2 answers
  • Please help asap, need this done tomorrow ​
    7·1 answer
  • Margie's car can go 3232 miles on a gallon of gas, and gas currently costs $4$4 per gallon. How many miles can Margie drive on $
    14·1 answer
  • What is 7 wholes and 16 over 100 in decimal form
    6·2 answers
  • Plz help fast.Aka please don't waste my points.Show your Work
    6·1 answer
  • What is the image of the point (-8,0) after a rotation of 270° counterclockwise
    13·2 answers
  • Solve each equation by factoring.
    13·1 answer
  • A student would like to estimate the mean length of words in a book report he just finished writing. He selects a
    11·1 answer
  • If a : b= 5:8 and a = 20, find b.
    14·2 answers
  • Melissa has a student dictionary on her desk. Her dictionary contains 99 pages. In this dictionary, more words start with the le
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!