Answer:
h = 6.35 W/m².k
Explanation:
In order to solve this problem, we will use energy balance, taking the thin hot plate as a system. According to energy balance, the rate of heat transfer to surrounding through convection must be equal to the energy stored in the plate:
Rate of Heat Transfer Through Convection = Energy Stored in Plate
- h A (Ts - T₀) = m C dT/dt
where,
h = convection heat transfer coefficient = ?
A = Surface area of plate through which heat transfer takes place = 2 x 0.3 m x 0.3 m (2 is multiplied for two sides of thin plate) = 0.18 m²
Ts = Surface Temperature of hot thin plate = 225⁰C
T₀ = Ambient Temperature = 25°C
m = mass of plate = 3.75 kg
C = Specific Heat = 2770 J/kg. k
dT/dt = rate of change in plate temperature = - 0.022 K/s
Therefore,
- h (0.18 m²)(225 - 25) k = (3.75 kg)(2770 J/kg.k)(- 0.022 k/s)
h = (- 228.525 W)/(- 36 m².k)
<u>h = 6.35 W/m².k</u>
Answer:
Glass
Explanation:
Please mark me the brilliant
Answer:
Relative humidity 48%.
Dew point 74°F
humidity ratio 118 g of moisture/pound of dry air
enthalpy 41,8 BTU per pound of dry air
Explanation:
You can get this information from a Psychrometric chart for water, like the one attached.
You enter the chart with dry-bulb and wet-bulb temperatures (red point in the attachment) and following the relative humidity curves you get approximately 48%.
To get the dew point you need to follow the horizontal lines to the left scale (marked with blue): 74°F
for the humidity ratio you need to follow the horizontal lines but to the rigth scale (marked with green): 118 g of moisture/pound of dry air
For enthalpy follow the diagonal lines to the far left scale (marked with yellow): 41,8 BTU per pound of dry air
Answer:
B. Public
Explanation:
A ____________ is any group that has an actual or potential interest in or impact on an organization's ability to achieve its objectives.
a. People
b. Public
c. Profile
d. Pro-association
<h3><u>The distance between the two stations is</u><u> </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>

Explanation:
<h2>Given:</h2>








<h2>Required:</h2>
Distance from Station A to Station B

<h2>Equation:</h2>




<h2>Solution:</h2><h3>Distance when a = 0.4 m/s²</h3>
Solve for 





Solve for 




Solve for 





<h3>Distance when a = 0 m/s²</h3>



Solve for 





Solve for 




Solve for 





<h3>Distance when a = -0.8 m/s²</h3>



Solve for 






Solve for 




Solve for 





<h3>Total Distance from Station A to Station B</h3>





<h2>Final Answer:</h2><h3><u>The distance between the two stations is </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>