1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
12

Why we use combination of grep with awk, explain with example?

Engineering
1 answer:
Akimi4 [234]3 years ago
8 0
I’m sorry , but reading this is confusing ...




can you explain please ?




^-^
You might be interested in
QUESTION 6
Aloiza [94]
It would be 2 Portfolio
3 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Who can use NIST resources?
sukhopar [10]

Answer:

Federal agencies

Explanation:

NIST (National Institute of Standards and Technology) also called between 1901 and 1988 National Bureau of Standards (NBS), it is an agency of the Technology Administration of the United States Department of Commerce. The mission of this institute is to promote innovation and industrial competition in the United States through advances in metrology, standards and technology in ways that improve economic stability and quality of life.

As part of this mission, NIST scientists and engineers continually refine the science of measurement (metrology) by creating precise engineering and manufacturing required for most current technological advances. They are also directly involved in the development and testing of standards made by the private sector and government agencies. The NIST was originally called the National Bureau of Standards (NBS), a name it had from 1901 to 1988. The progress and technological innovation of the United States depends on the abilities of the NIST, especially if we talk about four areas: biotechnology , nanotechnology, information technologies and advanced manufacturing.

7 0
3 years ago
For a turning operation, you have selected a high-speed steel (HSS) tool and turning a hot rolled free machining steel. Your dep
Alisiya [41]

Answer:

MRR = 1.984

Explanation:

Given that                              

Depth of cut ,d=0.105 in

Diameter D= 1 in

Speed V= 105 sfpm

feed f= 0.015 ipr

Now  the metal   removal  rate   given as

MRR= 12 f V d

d= depth of cut

V= Speed

f=Feed

MRR= Metal removal rate

By putting the values

MRR= 12 f V d

MRR = 12 x 0.015 x 105 x 0.105

MRR = 1.984

Therefore answer is -

1.944

8 0
3 years ago
How to find the voltage(B Aab) in series parallel circuit? ​
Sindrei [870]

Answer:

  Vab ≈ 3.426 V

Explanation:

First of all, it is convenient to find the equivalent parallel resistance of R5 and R6. That will be ...

  R56 = (R5)(R6)/(R5 +R6) = (1000)(1500)/(1000 +1500) = 600

Then we can call V1 the voltage at the top of R2. The voltage at Va is a divider from V1:

  Va = V1·(R4/(R3+R4)) = V1(560/1030) ≈ 0.543689V1

The voltage at Vb is also a divider from V1:

  Vb = V1·(R7+R8)/(R2 +R56 +R7 +R8) = V1(780/1710) ≈ 0.456140V1

The parallel branches containing Va and Vb have an effective resistance of ...

  (1030)(1710)/(1030+1710) = 642.81

That forms a divider with R1 to give V1:

  V1 = (100 V)642.81/(1000 +642.81) ≈ 39.1287 V

The difference Va-Vb is ...

  Vab = (39.1287 V)(0.543689 -0.456140) ≈ 3.426 V

_____

We have done this using parallel resistance and voltage divider calculations. You can also do it using node voltage equations. Using the same definition for V1 as above, we have ...

  (Vs -V1)/R1 +(Vb -V1)/(R56+R2) +(Va-V1)/R3 = 0

  (V1 -Vb)/(R56 +R2) -Vb/(R7+R8) = 0

  (V1 -Va)/R3 -Va/R4 = 0

The solution of interest is the value of Vab, shown in the attachment. It computes as 154200/45013 V ≈ 3.42568 V.

4 0
3 years ago
Other questions:
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • To reduce the drag coefficient and thus improve the fuel efficiency of cars,the design of side rearview mirrors has changed dram
    11·1 answer
  • Which is the correct order for handwashing
    11·2 answers
  • What is the correct statement regarding the stress over the section of a shaft in torsion?
    13·1 answer
  • A certain working substance receives 100 Btu reversibly as heat at a temperature of 1000℉ from an energy source at 3600°R. Refer
    13·1 answer
  • By efficiency, we generally mean the ratio of the desired output to the required input. That is, efficiency is a measure of what
    7·1 answer
  • Given a program with execution times broken down shown below. Assume that techniques can only be applied to accelerate the integ
    12·1 answer
  • An 80-percent-efficient pump with a power input of 20 hp is pumping water from a lake to a nearby pool at a rate of 1.5 ft3/s th
    14·1 answer
  • Both equilibrium equations and constitutive models are needed to solve statically indeterminate problems. a)- True b)-False
    13·1 answer
  • Are there engineering students here?​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!