Q1)
molarity is defined as the number of moles of solute in 1 L of solution.
the NaCl solution volume is 1.00 L
number of moles NaCl = NaCl mass present / molar mass of NaCl
NaCl moles = 112 g / 58.5 g/mol = 1.91 mol
the number of moles of NaCl in 1.00 L of solution is - 1.91 mol
therefore molarity of NaCl is 1.91 M
Q2)
molality is defined as the number of moles of solute in 1 kg of solvent.
density is mass per volume.
density of the solution is 1.08 g/mL.
therefore mass of the solution is = density x volume
mass = 1.08 g/mL x 1000 mL = 1080 g
since we have to find the moles in 1 kg of solvent
mass of solvent = 1080 g - 112 g = 968 g
number of moles of NaCl in 968 g of solvent - 1.91 mol
therefore number of NaCl moles in 1000 g - (1.91 mol / 968 g) x 1000 g/kg = 1.97 mol/kg
molality of NaCl solution is 1.97 mol/kg
Q3)
mass percentage is the percentage of mass of solute by total mass of the solution
mass percentage of solution = mass of solute / total mass of the solution
mass of solute = 112 g
total mass of solution = 1080 g
mass % of NaCl = 112 g / 1080 g x 100%
therefore mass % of NaCl = 10.4 %
answer is 10.4 %
Answer:
<h2>Hereis the correct answer </h2>
(A. Au3+ and CI2)
Explanation:
<h3>STUDY CORRECTION. </h3>
<u>Answer:</u> The number of moles of gas remaining in the lungs is 0.063 moles
<u>Explanation:</u>
The relationship of number of moles and volume at constant temperature and pressure was given by Avogadro's law. This law states that volume is directly proportional to number of moles at constant temperature and pressure.
The equation used to calculate number of moles is given by:

where,
are the initial volume and number of moles
are the final volume and number of moles
We are given:

Putting values in above equation, we get:

Hence, the number of moles of gas remaining in the lungs is 0.063 moles
Answer:
Fe will displace On but no the reaction is not vigorous.