For this case, the first thing we must do is define variables.
m: number of times you cut the grass
d: amount of dollars you earn.
We now write the linear equation that models the problem:
d = 12m
The slope of the line is 12, which means that each time you cut the grass, you earn 12 dollars.
Answer:
an equation for the number of dollars, d, you earn when you mow the lawn m times is:
d = 12m
Answer:
250 berries
Step-by-step explanation:
There are 10 berries to every orange there is. It is given that there are 25 oranges. Simply multiply 10 with 25:
10 x 25 = 250
There are 250 berries.
~
Number of ribbons that can be cut = 6 ÷ 1/2
Number of ribbons that can be cut = 6 x 2/1
Number of ribbons that can be cut = 12
-----------------------------------------------------------------------------------------
Answer: 12 1/2 foot pieces can be cut from 6 feet ribbon
-----------------------------------------------------------------------------------------
Answer:
12
Step-by-step explanation:
A 2 - sided counter ; (red, yellow)
A spinner (1,2,3,4,5,6)
Number of trials = 80
P(red and number > 3) :
P(red) = 1/2 ;
P(number >3) : numbers greater Than 3 = (4, 5, 6)
Hence, P(number <3) = 3 /6 = 1/2
Theoretical probability = 1/2 *1/2 = 1/4
Expected number of outcomes :
1/4 * number of trials
1/4 * 80 = 20
Experimental outcome :
Relative frequency = number of outcomes / number of trials
Relative frequency = 2/5
Hence,
2/5 = number of outcomes / 80
Cross multiply :
160 = number of outcomes * 5
Number of outcomes = 160 /5 = 32
Actual outcomes = 32
Difference between actual and expected :
32 - 20 = 12
8x²+3y²=24
8x²+3y²-24=0
Let x be 1 ,
Therefore
8+3y²-24=0
3y²-16=0
3y²=16
y²=16/3
y=4/1.7
y=40/17
<em><u>Take</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>values</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>&</u></em><em><u>y</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>plot</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>graph</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>