1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelu [443]
3 years ago
10

Can someone please help me with these 7 questions please?

Mathematics
1 answer:
yarga [219]3 years ago
3 0

(1)\ (-xy)^3(xz)

Expand

(-xy)^3(xz) = (-x)^3* y^3*(xz)

(-xy)^3(xz) = -x^3* y^3*xz

Rewrite as:

(-xy)^3(xz) = -x^3*x* y^3*z

Apply law of indices

(-xy)^3(xz) = -x^4y^3z

(2)\ (\frac{1}{3}mn^{-4})^2

Expand

(\frac{1}{3}mn^{-4})^2 =(\frac{1}{3})^2m^2n^{-4*2}

(\frac{1}{3}mn^{-4})^2 =\frac{1}{9}m^2n^{-8

(3)\ (\frac{1}{5x^4})^{-2}

Apply negative power rule of indices

(\frac{1}{5x^4})^{-2}= (5x^4)^2

Expand

(\frac{1}{5x^4})^{-2}= 5^2x^{4*2}

(\frac{1}{5x^4})^{-2}= 25x^{8

(4)\ -x(2x^2 - 4x) - 6x^2

Expand

-x(2x^2 - 4x) - 6x^2 = -2x^3 + 4x^2 - 6x^2

Evaluate like terms

-x(2x^2 - 4x) - 6x^2 = -2x^3 -2x^2

Factor out x^2

-x(2x^2 - 4x) - 6x^2 = (-2x-2)x^2

Factor out -2

-x(2x^2 - 4x) - 6x^2 = -2(x+1)x^2

(5)\ \sqrt{\frac{4y}{3y^2}}

Divide by y

\sqrt{\frac{4y}{3y^2}} = \sqrt{\frac{4}{3y}}

Split

\sqrt{\frac{4y}{3y^2}} = \frac{\sqrt{4}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}}

Rationalize

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}} * \frac{\sqrt{3y}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2\sqrt{3y}}{3y}

(6)\ \frac{8}{3 + \sqrt 3}

Rationalize

\frac{8}{3 + \sqrt 3} = \frac{3 - \sqrt 3}{3 - \sqrt 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{(3 + \sqrt 3)(3 - \sqrt 3)}

Apply different of two squares to the denominator

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{3^2 - (\sqrt 3)^2}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{9 - 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{6}

Simplify

\frac{8}{3 + \sqrt 3} = \frac{4(3 - \sqrt 3)}{3}

(7)\ \sqrt{40} - \sqrt{10} + \sqrt{90}

Expand

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4*10} - \sqrt{10} + \sqrt{9*10}

Split

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4}*\sqrt{10} - \sqrt{10} + \sqrt{9}*\sqrt{10}

Evaluate all roots

\sqrt{40} - \sqrt{10} + \sqrt{90} =2*\sqrt{10} - \sqrt{10} + 3*\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =2\sqrt{10} - \sqrt{10} + 3\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =4\sqrt{10}

(8)\ \frac{r^2 + r - 6}{r^2 + 4r -12}

Expand

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r^2 + 3r-2r - 6}{r^2 + 6r-2r -12}

Factorize each

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r(r + 3)-2(r + 3)}{r(r + 6)-2(r +6)}

Factor out (r+3) in the numerator and (r + 6) in the denominator

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{(r -2)(r + 3)}{(r - 2)(r +6)}

Cancel out r - 2

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r + 3}{r +6}

(9)\ \frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14}

Cancel out x

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 5x - 14}

Expand the numerator of the 2nd fraction

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 7x+2x - 14}

Factorize

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x(x - 7)+2(x - 7)}

Factor out x - 7

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Factor out 4 from 4x + 8

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4(x + 2)}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Cancel out x + 2

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x} \cdot \frac{1}{(x - 7)}

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x(x - 7)}

(10)\ (3x^3 + 15x^2 -21x) \div 3x

Factorize

(3x^3 + 15x^2 -21x) \div 3x = 3x(x^2 + 5x -7) \div 3x

Cancel out 3x

(3x^3 + 15x^2 -21x) \div 3x = x^2 + 5x -7

(11)\ \frac{m}{6m + 6} - \frac{1}{m+1}

Take LCM

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m(m + 1) - 1(6m + 6)}{(6m + 6)(m + 1)}

Expand

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 + m- 6m - 6}{(6m + 6)(m + 1)}

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 - 5m - 6}{(6m + 6)(m + 1)}

(12)\ \frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}}

Rewrite as:

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} \div \frac{2}{y^2 - 9}

Express as multiplication

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 9}{2}

Express y^2 - 9 as y^2 - 3^2

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 3^2}{2}

Express as difference of two squares

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{(y - 3)(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{1} * \frac{(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{y+3}{2}

Read more at:

brainly.com/question/4372544

You might be interested in
In the following proportion, what does x equal?
trasher [3.6K]
A is the correct answer. 23/40=0.575 and 4.6/8= 0.575 as well.
6 0
3 years ago
Read 2 more answers
7. If F(x) = f(g(x)), where f(-2) = 8, f'(-2) = 4, f'(5) = 3, g(5)=-2, gʻ(5) = 6.. Find F'(5) <br>​
serious [3.7K]

Answer:

I'm going to lay this out in a chart so it's a little easier to see:

F(x) = f(g(x))

x | f (x) | f ' (x) | g (x) | g ' (x)

--------------------------------------

-2 | 8 | 4 |

5 | | 3 | -2 | 6

Remember the chain rule, which says

(f (g (x))) ' = g ' (x) f ' (g (x))

When they ask for F ' (5), they are asking for (f (g (x))) ' when x = 5.

Using the chain rule, that's

F ' (5) = g ' (5) f ' (g (5))

We can simplify using the numbers provided.

F ' (5) = (6) f ' (-2)

F ' (5) = (6) (4)

F ' (5) = 24

I hope that helps!

by jannat <33

7 0
3 years ago
Read 2 more answers
Please answer !!<br> 12x - 18y + 24
PtichkaEL [24]

6 (2x + 3y-4z)

Step by step explanation:

6 (2x + 3y-4z)

im prob wrong-

5 0
3 years ago
Help pls i need this done asap ty
zhuklara [117]

Answer:

b) 7.89*10^4

c) 3.15*10^3

Step-by-step explanation:

2-42)

the coefficient in scientific notation (the number that is not 10^x) has to be greater or equal to 1 and less than 10. so c and b are incorrect.

b) 0.789*10^5

c) 31.5*10^2

b) 0.789*10^5

in order to make 0.789 greater than 1, I would just multiply it by 10. shown below

=0.789*10*10*10*10*10

=7.89*10*10*10*10

=7.89*10^4

c) 31.5*10^2

same concept but this time divide by 10 to make 3.15 which will add another *10 to the exponent

=31.5*10*10

=3.15*10*10*10

=3.15*10^3

6 0
3 years ago
Read 2 more answers
Find the values of the six trigonometric functions for angle G.<br>​
VLD [36.1K]

Answer:

I don't know if it's just my screen or something I can't make out the numbers in the picture it's too fuzzy

8 0
3 years ago
Read 2 more answers
Other questions:
  • A study is conducted to assess the smoking behaviors of high-school seniors. A random sample of 8 seniors is selected and each s
    9·1 answer
  • Given f(x)= 8x^{15}+6x^{8}-3x^{3}+5x^{2}, the degree is
    14·1 answer
  • Consider the function f given by f(x)=x*(e^(-x^2)) for all real numbers x.
    13·2 answers
  • Let h(x) = 3x – 7. If h(x) = 0, find x.
    15·2 answers
  • What is the inverse of y=(x+3)2<br><img src="https://tex.z-dn.net/?f=y%20%3D%20%28x%20%2B%203%29%20%7B%20%7D%5E%7B2%7D%20" id="T
    13·2 answers
  • Help word problem ......
    5·2 answers
  • The price of an item has dropped to 77$ today. Yersterday it was 140$. Find the percentage decrease.
    14·1 answer
  • I am down help please
    7·1 answer
  • [HTML]What is a counterexample for the statement "If all four sides of a quadrilateral
    6·2 answers
  • **answer fast pls**
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!