1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
4 years ago
11

How many times does 32 go into 400

Mathematics
2 answers:
Andrei [34K]4 years ago
7 0
12.5 because 400/32 is 12.5 lol I used a calculator
Vitek1552 [10]4 years ago
3 0

Answer:

3.4

Step-by-step explanation:

You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
What is 2/4 added to 1/3?​
Sloan [31]
5/6. fine the common factor of both 4 and 3 and multiple and than simplify.
8 0
3 years ago
Can someone help me with the missing ones??
den301095 [7]

Answer:

Step-by-step explanation:

3). Definition of midpoint

4). Midpoint theorem ( ≅ parts are = )

7). Division Property of Equality.

8).  QR = 5 + <em>2</em> = 7     Substitution x by equal value

9). PQ = 4(<em>2</em>)  - 1 = 7    Substitution x by equal value

10). Segment addition postulate

11). Substitution

6 0
3 years ago
Suppose that the functions s and t are defined for all real numbers x as follows.
jeka94

Answer:

(s.t)(x) = 4x^2+24x^2\\(s-t)(x) = x+6-4x^2\\(s+t)(-3) = 39

Step-by-step explanation:

Given functions are:

s(x)= x+6\\t(x)= 4x^2

We have to find:

(s.t)(x) => this means we have to multiply the two functions to get the result.

So,

(s.t)(x) = s(x)*t(x)\\= (x+6)(4x^2)\\=4x^2.x+4x^2.6\\=4x^3+24x^2

Also we have to find

(s-t)(x) => we have to subtract function t from function s

(s-t)(x) = s(x) - t(x)\\= (x+6) - (4x^2)\\=x+6-4x^2

Also we have to find,

(s+t)(-3) => first we have to find sum of both functions and then put -3 in place of x

(s+t)(x) = s(x)+t(x)\\= x+6+4x^2

Putting x = -3

= -3+6+4(-3)^2\\=-3+6+4(9)\\=3+36\\=39

Hence,

(s.t)(x) = 4x^2+24x^2\\(s-t)(x) = x+6-4x^2\\(s+t)(-3) = 39

8 0
3 years ago
Need help asap There are two parts to the following question. First, answer part A. Then, answer part B.
Anastasy [175]

Answer:

both are correct

6 0
3 years ago
Other questions:
  • Please helpppppp!!!!!!
    8·1 answer
  • A volleyball team had 6 boys and 5 girls on it. The team needed 2 equipment managers. The coach selected 1 player at random to b
    5·1 answer
  • What is the value of the product (3 – 2i)(3 + 2i)? 5 9 + 4i 9 – 4i 13
    9·2 answers
  • 11/16 + 10/12 + 6/8 =
    7·1 answer
  • X
    8·1 answer
  • Classify the real number -1.125
    9·1 answer
  • Help me, i will mark if ur correct
    13·2 answers
  • James bought a cabinet for $438.00. The finance charge was $49 and she paid for it over 18 months.
    10·1 answer
  • Which expression is equivalent to g -m power divided by g to the n power
    15·1 answer
  • The school is planning to add 2 new playgrounds. Each playground will be in the shape of a square that measures 19m by 19m. What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!