M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Explanation:
Equation for energy balance will be as follows.


Hence, 
Therefore, we will calculate the final temperature as follows.

= 868.03 R
Now, we will calculate the mass as follows.
m = 
= 
= 1.031 lbm
Hence,

Putting the values into the above equation as follows.


= 655.2 Btu
Thus, we can conclude that work done by paddle wheel is 655.2 Btu.
Answer:
v₀ₓ = 63.5 m/s
v₀y = 54.2 m/s
Explanation:
First we find the net launch velocity of projectile. For that purpose, we use the formula of kinetic energy:
K.E = (0.5)(mv₀²)
where,
K.E = initial kinetic energy of projectile = 1430 J
m = mass of projectile = 0.41 kg
v₀ = launch velocity of projectile = ?
Therefore,
1430 J = (0.5)(0.41)v₀²
v₀ = √(6975.6 m²/s²)
v₀ = 83.5 m/s
Now, we find the launching angle, by using formula for maximum height of projectile:
h = v₀² Sin²θ/2g
where,
h = height of projectile = 150 m
g = 9.8 m/s²
θ = launch angle
Therefore,
150 m = (83.5 m/s)²Sin²θ/(2)(9.8 m/s²)
Sin θ = √(0.4216)
θ = Sin⁻¹ (0.6493)
θ = 40.5°
Now, we find the components of launch velocity:
x- component = v₀ₓ = v₀Cosθ = (83.5 m/s) Cos(40.5°)
<u>v₀ₓ = 63.5 m/s</u>
y- component = v₀y = v₀Sinθ = (83.5 m/s) Sin(40.5°)
<u>v₀y = 54.2 m/s</u>
Answer:
An object that is moving wants to stay moving in a straight line. It takes an outside force acting upon it to change its direction or cause an acceleration.
Explanation:
The answer for this question would be B) False or the second option because top-down processing is NOT often used when one encounters an unfamiliar stimulus.