1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
10

A free-falling golf ball strikes the ground and exerts a force on it. Which sentences are true about this situation? A golf ball

striking the ground is a collision. The ground exerts an equal force on the golf ball. The ground doesn’t exert a force on the golf ball. The force is zero because the golf ball has little mass.
Physics
2 answers:
Harlamova29_29 [7]3 years ago
8 0

Answer:

The ground exerts an equal force on the golf ball

Explanation:

Third's Newton Law states that:

"When an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A".

In this problem, object A is the golf ball while object B is the ground, so we can say that:

- the golf ball exerts a force on the ground

- the ground exerts an equal and opposite force on the golf ball

Serga [27]3 years ago
5 0
THe ground exerts an equal force on the golf ball

You might be interested in
Which formulas have been correctly rearranged to solve for radius? Check all that apply. r = GM central/v^2 r =fcm/v^2 r =ac/v^2
jek_recluse [69]

The orbital radius is: r=\frac{GM}{v^2}

Explanation:

The problem is asking to find the radius of the orbit of a satellite around a planet, given the orbital speed of the satellite.

For a satellite in orbit around a planet, the gravitational force provides the required centripetal force to keep it in circular motion, therefore we can write:

\frac{GMm}{r^2}=m\frac{v^2}{r}

where

G is the gravitational constant

M is the mass of the planet

m is the mass of the satellite

r is the radius of the orbit

v is the speed of the satellite

Re-arranging the equation, we find:

\frac{GM}{r}=v^2\\r=\frac{GM}{v^2}

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

7 0
3 years ago
Read 2 more answers
Hurry
marishachu [46]

6x8 = 48 feet

you can jump 48 feet on the moon

6 0
3 years ago
An electric drill transfers 200 J of energy into a useful kinetic energy store. It also transfers 44 J of energy by sound and 48
kramer

Answer:

Er = 108 [J]

Explanation:

To solve this problem we must understand that the total energy is 200 [J]. Of this energy 44 [J] are lost in sound and 48 [J] are lost in heat. In such a way that these energy values must be subtracted from the total of the kinetic energy.

200 - 44 - 48 = Er

Where:

Er = remaining energy [J]

Er = 108 [J]

3 0
3 years ago
Real life example for each gas law
Dvinal [7]
Applications of Gas Law in Real Life. A torch used to heat up the and rise the air temperature inside the balloon. This cause the air volume inside the balloon to increased and becoming less dense than the surrounding air. ... The air in the ears will change its volume then causes yours ears to pop due to the strain.
3 0
3 years ago
A wooden object (conically shaped) has a diameter of 8cm and height of 14cm. It floats in oil with 6cm of its height above oil l
baherus [9]

Answer:

(a) The density of the object is 316/343 × the density of the oil

(b) The fraction of oil displaced after immersing the object is 0.461 of the oil volume

Explanation:

(a) The volume, V of a cone of height, h and base diameter, D = 2×r is given by the following equation;

V = \dfrac{\pi r^{2} h}{3}

The volume of the object is therefore;

\dfrac{\pi \times 4^{2} \times 14}{3} = 74\tfrac{2}{3}\pi \, cm^3

Where 6 cm is above the oil level we have;

\dfrac{\pi \times \left (6 \times \dfrac{4}{14}   \right )^{2} \times 6}{3} = 5\tfrac{43}{49}\pi \, cm^3 above the oil level

Therefore, volume of the oil displaced = 68\tfrac{116}{147}\pi cm³ = 216.11 cm³

The density of the object is thus;

\dfrac{68\tfrac{116}{147}\pi}{ 74\tfrac{2}{3}\pi} \times  Density \ of \ the \ oil = \dfrac{316}{343}  \right ) \times  Density \ of \ the \ oil

The density of the object = 316/343 × the density of the oil.

(b) The volume of the oil = 2 × Volume of the object = 2 \times 74\tfrac{2}{3}\pi \, cm^3 = 149\tfrac{1}{3}\pi \, cm^3

The fraction of the volume displaced, x, after immersing the object is given as follows;

x = \dfrac{68\tfrac{116}{147}\pi}{ 149\tfrac{1}{3}\pi} = \dfrac{158}{343} = 0.461

The fraction of oil displaced after immersing the object = 0.461 of the volume of the oil

8 0
3 years ago
Other questions:
  • 9. (02.04 LC)
    15·1 answer
  • When a 4.60-kg object is hung vertically on a certain light spring that obeys Hooke's law, the spring stretches 2.30 cm. (a) If
    9·1 answer
  • The chemical properties
    11·1 answer
  • The smallest unit of an element that has all of the properties of the element is a/an
    6·2 answers
  • Gauss's Law You are in the presence of a uniform electric field of strength E that is pointed in the x direction. You have 2 Gau
    13·1 answer
  • 1. Bone has a Young’s modulus of about
    14·1 answer
  • 20 points please helppp me I’m begging u this is due soon please come on ????? Anyone
    6·2 answers
  • HEEEEEEELLLLLPPPPPPP 20 points and Brainliest
    6·1 answer
  • a. As you coast down a hill on your bicycle, you accelerate at 0.5 m/s2. If the total mass of your body and the bicycle is 80 ki
    14·1 answer
  • The conduction of heat from hot body to cold body is an example of what thermodynamics process?<br>​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!