Answer:
<u>The flux decreases because the angle between B⃗ and the coil's axis changes.</u>
<u />
Explanation:
The flux through the coil is given by a dot product, between the magnetic field and the vector representing the area of the coil.

The latter vector has direction perpendicular to the plane in which the area of the coil is, and magnitude equal to the area of the coil. As in the attached image, the vector S is the vector respresenting the area of the coil.
Therefore, the flux will be maximum when the vector S is in the same direction as B, and will be zero when they are perpendicular.
Now, if <em>the coil is rotated so that the magnetic field is in the plane of the coil </em>then, the vectors S and B are perpendicualr, and there will not be net magnetic flux, that is, the flux will decrease.
Answer:
The acceleration will be 140 meter per second
Explanation:
Force F = mass m × acceleration a
If F = 42 N and m = 0.30 kg
Then acceleration a = F/m
a = 42/0.30
a = 140 m/s

<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.