5 inch is the width, 8 inch is the length.
Find to scale between the two widths:
10 /5 = 2 the larger photo is 2 times larger,
Multiply the known length by 2:
8 x 2 = 16
The length would be 16
Answer:
domain: x>3/5
Step-by-step explanation:
First we need to derive our function g(x) to get a new function g'(x)
To do this we will have to apply chain rule because we have an inner and outer functions.
Our G(x) = square root(3-5x)
Chain rule formula states that: d/dx(g(f(x)) = g'(f(x))f'(x)
where d/dx(g(f(x)) = g'(x)
g(x) is the outer function which is x^1/2
f(x) is our inner function which is 3-5x
therefore f'(x)= 1/2x^(-1/2) and f'(x) = -5
g'(f(x)) = -1/2(3-5x)^(-1/2)
Applying chain rule then g'(x) = 1/2 (3-5x)^(-/1/2)*(-5)
But the domain is the values of x where the function g'(x) is not defined
In this case it will be 3-5x > 0, because 3-5x is a denominator and anything divide by zero is infinity/undefined
which gives us x >3/5
The numbers are: "7 " and "21 " .
_______________________________________
Explanation:
_______________________________________
The numbers are: "x" and "x + 14" .
x + (x + 14) = 28 . Solve for "x" ; and then solve for "x + 14" .
_______________________________________
→ x + (x + 14) = 28 ;
Rewrite as:
→ x + x + 14 = 28 ;
→ 1x + 1x + 14 = 28 ;
→ 2x + 14 = 28 ;
Subtract "14" from each side of the equation;
→ 2x + 14 − 14 = 28 <span>− 14 ;
</span> → 2x = 14 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ 2x / 2 = 14 / 2 ;
→ x = 7 .
_________________________________________
So; one of the numbers is: " 7 " .
The other number is: " x + 14 " ; which equals: " 7 + 14 = 21".
The other number is: "21 " .
_________________________________________
The numbers are: "7 " and "21 " .
_________________________________________
Answer:
pretty boring, I'm kind of tired to be honest. What ab you?
thanks for the points though
Answer:

Step-by-step explanation:
We need to find union of given sets
and 
We know by definition that union of two given sets say A and B is set C with all the unique and common values given in set A and B.
∴
∪
= 