Answer:
Y=s^2/36 and y=5.7;14.3 ft
Step-by-step explanation:
The question was not typed correctly. Here, a better version:
<em>The aspect ratio is used when calculating the aerodynamic efficiency of the wing of a plane for a standard wing area, the function A(s)=s^2/36 can be used to find the aspect ratio depending on the wingspan in feet. If one glider has an aspect ratio of 5.7, which system of equations and solution can be used to represent the wingspan of the glider? Round solution to the nearest tenth if necessary. </em>
<em>
</em>
<em>Y=s^2/36 and y=5.7;14.3 ft
</em>
<em>Y=5.7s^2 and y=36; s=2.5ft
</em>
<em>Y=36s^2 and y=0; s=0.4 ft
</em>
<em>Y=s^2/36 +5.7 and y=0; s=5.5 ft</em>
In the function A(s)=s^2/36 A(s) represents the aspect ratio and s the wingspan. If one glider has an aspect ratio of 5.7, then A(s) = 5.7. We want to know the wingspan of the glider. Replacing A(s) by Y we get the following system of equation:
Y=s^2/36
with y = 5.7
5.7 = s^2/36
5.7*36 = s^2
√205.2 = s
14.3 ft
7.14 mile per hour is how fast she ran
nuuuu the picture is blocked im on my school computer sorry :(
First you have multiply 6 by both 3x and 8
6*3x = 18x
6*8= 48
18x + 48 + 32 + 12x
now combine like terms
18x + 12x = 30x
48 + 32 = 80
so 30x + 80 is your answer