A elephant kicks a 5.0\,\text {kg}5.0kg5, point, 0, start text, k, g, end text stone with 150\,\text J150J150, start text, J, en
S_A_V [24]
The speed of the stone is 7.7 m/s
Explanation:
The kinetic energy of a body is the energy possessed by the body due to its motion. Mathematically,

where
m is the mass of the body
v is its speed
For the stone in this problem, we have:
K = 150 J is its kinetic energy
m = 5.0 kg is its mass
Re-arranging the equation for v, we find the speed of the stone:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
Answer:
What a medium-mass star becomes after a planetary nebula; a very bright, dense mass about the size of the planet Earth. ... The process that generates all of the energy that a star produces. Supernova. A Red Super Giant explodes into this when it runs out of elements to fuse together.
Explanation:
Answer:
A. 4.82 cm
B. 24.66 cm
Explanation:
The depth of water = 19.6 cm
Distance of fish = 6.40 cm
Index of refraction of water = 1.33
(A). Now use the below formula to compute the apparent depth.

(B). the depth of the fish in the mirror.

Now find the depth of reflection of the fish in the bottom of the tank.

Answer:
at the Equator
Explanation:
The four seasons are determined by four main positions in the Earth's orbit in its turn around the Sun (ecliptic plane), which are called solstices and equinoxes: winter solstice (Capricorn point, December 22), spring equinox (Aries point, around March 21-22), summer solstice (Cancer point, June 21) and autumn equinox (Libra point, around September 22-23).
In the equinoxes, the axis of rotation of the Earth is perpendicular to the sun's rays, which fall vertically over the equator. In solstices, the axis is inclined 23.5º, so that the sun's rays fall vertically on the Tropic of Cancer (summer in the northern hemisphere) or Capricorn (summer in the southern hemisphere).
When falling vertically on Ecuador, it generates a greater impact on the surface of the Tierre reaching a greater amount of energy and therefore UV rays.