Answer:
A) When the angle between the Force (F) and Displacement (x) is 0°, because, Work done (W) is directly proportional to the Cosine of the Angle between the Force applied and the resultant displacement of the subject.
W = F•x cos ∅
If ∅ = 0°,
W = F•x ===> Maximum Work Done.
If ∅ = 45°,
W = F•x/√2
If ∅ = 90°,
W = 0
If ∅ = 180°,
W = –F•x ===> Minimum Work Done.
I would say D.) The ball bounces many times suggesting the energy is used up efficiently
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s
Explanation:
it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing.
When an object is moving with constant velocity, it does not change direction nor speed and therefore is represented as a straight line when graphed as distance over time.